Quantum graphs with summable matrix potentials

Cover Page

Cite item

Full Text

Abstract

Let G be a metric, finite, noncompact, and connected graph with finitely many edges and vertices. Assume also that the length at least of one of the edges is infinite. The main object of the paper is Hamiltonian Hα associated in L2(G; Cm) with matrix Sturm-Liouville’s expression and boundary delta-type conditions at each vertex. Assuming that the potential matrix is summable and applying technique of boundary triplets and the corresponding Weyl functions we show that the singular continuous spectrum of the Hamiltonian Hα as well as any other self-adjoint realization of the Sturm-Liouville expression is empty. We also indicate conditions on the graph ensuring the positive part of the Hamiltonian Hα to be purely absolutely continuous. Under an additional condition on the potential matrix the Bargmann type estimate for the number of the negative eigenvalues of the operator Hα is obtained. Also we find a formula for the scattering matrix of the pair {Hα, HD} where HD is the operator of the Dirichlet problem on the graph.

About the authors

Ya. I. Granovskyi

Institute of Applied Mathematics and Mechanics

Author for correspondence.
Email: yarvodoley@mail.ru
Ukraine, 74, Rosa Luxemburg str., Donetsk, 83048

M. M. Malamud

Peoples Friendship University of Russia

Email: malamud3m@gmail.com
Russian Federation, 6, Miklukho-Maklaya street, Moscow, 117198

H. Neidhardt

Weierstrass-Institut für Angewandte Analysis und Stochastik

Email: malamud3m@gmail.com
Germany, 39, Mohrenstrasse 39, Berlin, 10117

References

  1. Behrndt J., Malamud M.M., Neidhardt H. // J. Funct. Anal. 2017. V. 273. P. 1970-2025.
  2. Berkolaiko G., Kuchment P. // Introduction to Quantum Graphs. Mathematical surveys and monographs. 2013. V. 186. 270 р.
  3. Герасименко Н.И., Павлов Б.С. // ТМФ. 1988. Т. 74. № 3. С. 345-359.
  4. Davies E., Pushnitski A. // J. Analysis and PDE. 2011. V. 4. № 5. Р. 729-756.
  5. Деркач В.А., Маламуд М.М. Теория расширений симметрических операторов и граничные задачи. К.: Ин-т математики НАН Украины, 2017. 573 с.
  6. Derkach V.A., Malamud M.M. // J. Funct. Anal. 1991. V. 95. P. 1-95.
  7. Exner P., Kostenko A., Malamud M., Neidhard H. // Annales Henri Poincare. 2017. V. 19. № 11. P. 3457-3510.
  8. Exner P., Laptev A., Usman M. // Commun. Math. Phys. 2014. V. 326. P. 531-541.
  9. Granovskyi Ya., Malamud M., Neidhardt H., Posilicano A. // J. Funct. Anal. and Op. Th. for Quantum Physics. The Pavel Exner Anniversary Volume. 2017. P. 271-313.
  10. Malamud M.M., Neidhard H. // J. Funct. Anal. 2011. V. 260. № 3. P. 613-638.
  11. Маслов В.П. // Операторные методы. М.: Гл. ред. физ.-мат. лит. изд-ва “Наука”, 1973. 544 с.
  12. Ong B.-S. // Quantum graphs and their applications. Contemp. Math. Amer. Math. Soc., Providence (RI). 2006. V. 415. P. 241-249.
  13. Post O. // Lecture Notes in Mathematics. 2039, Springer, 2012.
  14. Reed M., Simon B. // Methods of Modern Mathematical Physics. III. Functional Analysis, 2nd ed. N.Y.: Acad. Press, 1980.
  15. Титчмарш Э.Ч. // Разложения по собственным функциям, связанные с дифференциальными уравнениями второго порядка. М.: ИЛ, 1960. T. 1.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies