On the complexity of some partition problems of a finite set of points in Euclidean space into balanced clusters

Cover Page

Cite item

Full Text

Abstract

We consider some problems of partitioning a finite set of N points in d-dimension Euclidean space into two clusters balancing the value of (1) the quadratic variance normalized by a cluster size, (2) the quadratic variance, and (3) the size-weighted quadratic variance. We have proved the NP-completeness of all these problems.

About the authors

A. V. Kel’manov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Author for correspondence.
Email: kelm@math.nsc.ru
Russian Federation, 4, Acad. Koptyug prospect, Novosibirsk, 630090; 1, Pirogova str., Novosibirsk, 630090

A. V. Pyatkin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: artem@math.nsc.ru
Russian Federation, 4, Acad. Koptyug prospect, Novosibirsk, 630090; 1, Pirogova str., Novosibirsk, 630090

V. I. Khandeev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: khandeev@math.nsc.ru
Russian Federation, 4, Acad. Koptyug prospect, Novosibirsk, 630090; 1, Pirogova str., Novosibirsk, 630090

References

  1. Aloise D., Deshpande A., Hansen P., Popat P. // NP-hardness of Euclidean sum-of-squares clustering. Machine Learning. 2009. V. 75. № 2. P. 245-248.
  2. Papadimitriou C.H. // Worst-Case and Probabilistic Analysis of a Geometric Location Problem. SIAM J. Comput. 1981. V. 10. № 3. P. 542-557.
  3. Masuyama S., Ibaraki T., Hasegawa T. // The computational complexity of the m-center problems in the plane. IEEE Trans. IECE Jpn. 1981. V. 64. № 2. P. 57-64.
  4. Aggarwal H., Imai N., Katoh N., Suri S. // Finding k points with minimum diameter and related problems. J. Algorithms. 1991. V. 12. № 1. P. 38-56.
  5. Snedecor G.W., Cochran W.G. // Statistical Methods, Eighth Edition, Iowa State University Press, 1989.
  6. Garey M.R., Johnson D.S. // Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman. San Francisco, 1979.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences