On the independence number of distance graphs with vertices in {-1, 0, 1}n

Cover Page

Cite item

Full Text

Abstract

In this work we find new bounds for the independence numbers of distance graphs with vertices in {-1, 0, 1}n.

About the authors

A. M. Raigorodskii

Moscow Institute of Physics and Technology; Lomonosov Moscow State University; Caucasus Mathematical Center of Adygea State University; Institute of Mathematics and Computer Science, Buryat State University

Author for correspondence.
Email: mraigor@yandex.ru
Russian Federation, 9, Institutskij lane, Dolgoprudny, Moscow region, 141701; 1, Leninskie gory, Moscow, 119991; 208, Pervomayskaya str., Maykop, Republic of Adygea, 385000; 5, Ranzhurova str., Ulan-Ude, 670000

E. D. Shishunov

Lomonosov Moscow State University

Email: mraigor@yandex.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

References

  1. Захаров Д.А., Райгородский А.М. Клико-хроматические числа графов пересечений // Матем. заметки. 2019. Т. 105. № 1. С. 142-144.
  2. Боголюбский Л.И., Райгородский А.М. Замечание о нижних оценках хроматических чисел пространств малой размерности с метриками l1 и l2 // Матем. заметки. 2019. Т. 105. № 2. С. 187-213.
  3. Frankl P., Kupavskii A. Partition-Free Families of Sets // Proc. of the London Mathematical Society. 2019. doi: 10.1112/plms.12236
  4. Пушняков Ф.А. О количествах ребер в порожденных подграфах некоторых дистанционных графов // Матем. заметки. 2019. Т. 105. № 4. С 592-602.
  5. Shabanov L.E. Turán-Type Results for Distance Graphs in an Infinitesimal Plane Layer // J. Mathematical Sciences (United States). 2019. V. 236. № 5. Р. 554-578.
  6. Sagdeev A.A., Raigorodskii A.M. On a Frankl-Wilson Theorem and Its Geometric Corollaries // Acta Math. Univ. Comenianae. 2019.
  7. Balogh J., Cherkashin D., Kiselev S. Coloring General Kneser Graphs and Hypergraphs Via High-Discrepancy Hypergraphs // Europ. J. Combinatorics. 2019. V. 79. Р. 228-236.
  8. Kupavskii A., Mustafa N.H., Swanepoel K.J. Bounding the Size of an Almost Equidistant Set in Euclidean Space // Combinatorics Probability and Computing. V. 28. Iss. 2. March 2019. P. 280-286.
  9. Kostina O.A. On Lower Bounds for the Chromatic Number of Spheres // Math. Notes. 2019. V. 105. № 1. Р. 16-27.
  10. Frankl P., Kupavskii A. Families of Sets with no Matching of Sizes 3 and 4 // Europ. J. of Combinatorics. 2019. V. 75. P. 123-135.
  11. Shabanov D.A., Krokhmal N.E., Kravtsov D.A. Panchromatic 3-Colorings of Random Hypergraphs // Europ. J. of Combinatorics. 2019. V. 78. P. 28-43.
  12. Cherkashin D., Petrov F. On Small n-Uniform Hypergraphs with Positive Discrepancy // J. of Combinatorial Theory. Ser. B. 10.1016/j.jctb.2019.04.001.
  13. Cherkashin D., Kulikov A., Raigorodskii A. On the Chromatic Numbers of Small-Dimensional Euclidean Spaces // Discrete and Applied Math. 2018. V. 243. P. 125-131.
  14. Черкашин Д.Д., Райгородский А.М. О хроматических числах пространств малой размерности // ДАН. 2017. Т. 472. № 1. С. 11-12.
  15. Шишунов Е.Д., Райгородский А.М. О числах независимости некоторых дистанционных графов с вершинами в {-1, 0, 1}n // ДАН. 2019. Т. 485. № 3.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences