Direct observation of the processes near particle-to-particle contacts at electric pulse consolidation of titanium powder

Cover Page

Cite item

Full Text

Abstract

Direct high-speed micro-video records prove the existence of highly overheated zones at the contacts of powder particles during short (~ 1 ms) electric current pulses. The value of overheating can exceed 1600 degrees and lead to the formation of liquid-phase sintering necks, the dimensions of which are well correlated with the size of the overheated zones. The micro-uniformity of the temperature field in the electric pulse heating allow understanding the unusually high consolidation rates of powder materials observed in spark plasma sintering.

About the authors

A. S. Rogachev

Merzhanov Institute of Structural Macrokinetics and Materials Science

Author for correspondence.
Email: rogachev@ism.ac.ru
Russian Federation, 142432, Moscow Region, Chernogolovka, Academician Osypian street, 8

S. G. Vadchenko

Merzhanov Institute of Structural Macrokinetics and Materials Science

Email: rogachev@ism.ac.ru
Russian Federation, 142432, Moscow Region, Chernogolovka, Academician Osypian street, 8

V. A. Kudryashov

Merzhanov Institute of Structural Macrokinetics and Materials Science

Email: rogachev@ism.ac.ru
Russian Federation, 142432, Moscow Region, Chernogolovka, Academician Osypian street, 8

A. S. Shchukin

Merzhanov Institute of Structural Macrokinetics and Materials Science

Email: rogachev@ism.ac.ru
Russian Federation, 142432, Moscow Region, Chernogolovka, Academician Osypian street, 8

M. I. Alymov

Merzhanov Institute of Structural Macrokinetics and Materials Science

Email: rogachev@ism.ac.ru

Corresponding Member of the Russian Academy of Sciences

Russian Federation, 142432, Moscow Region, Chernogolovka, Academician Osypian street, 8

References

  1. Bordia R.K., Kang S.-J.L., Olevsky E.A. // J. Am. Ceram. Soc. 2017. V. 100. P. 2314-2352.
  2. Hulbert D.M., Anders A., Dudina D.V., Andersson J., Jiang D., Unuvar C., Anselmi-Tamburini U., Lavernia E.J., Mukherjee A.K. // J. Appl. Phys. 2008. V. 104. 033305 (1-7).
  3. Hulbert D.M., Anders A., Andersson J., Lavernia E.J., Mukherjee A.K. // Scripta Materialia. 2009. V. 60. P. 835-838.
  4. Chawake N., Pinto L.D., Srivastav A.K., Akkiraju K., Murty B.S., Kottada R.S. // Scripta Materialia. 2014. V. 93. P. 52-55.
  5. Trzaska Z., Collard C., Durand L., Couret A., Chaix J.-M., Fantozzi G., Monchoux J.-P. // J. Am. Ceram. Soc. 2019. V. 102. P. 654-661.
  6. Емельянов А.Н., Шкиро В.М., Рогачев А.С., Рубцов В.И. // Известия ВУЗов. Цветная металлургия. 2002. № 2. C. 67-70.
  7. Кочетов Н.А., Рогачев А.С., Емельянов А.Н., Илларионова Е.В., Шкиро В.М. // Физика горения и взрыва. 2004. V. 40. C. 74-80.
  8. Yang C., Zhu M.D., Luo X., Liu L.H., Zhang W.W., Long Y., Xiao Z.Y., Fua Z.Q., Zhang L.C., Lavernia E.J. // Scripta Materialia. 2017. V. 139. P. 96-99.
  9. Aman Y., Garnier V., Djurado E. // J. Mater. Sci. 2012. V. 47. P. 5766-5773.
  10. Frei J.M., Anselmi-Tamburini U., Munir Z.A. // J. Appl. Phys. 2007. V. 101. 114914 (1-8).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies