Fabrication of a composite based on aluminum oxide nanofibers and nanodiamonds to construct phenol detection systems

Cover Page

Cite item

Full Text

Abstract

A composite based on aluminum oxide nanofibers (AONF) and modified nanodiamonds (MND) synthesized by explosion technique was made by mixing aqueous suspensions of components at a 5:1 weight ratio and incubating the mixture for 15 minutes at 32 °C. It is assumed that the formation of a composite is provided by the difference in the zeta-potentials of the components - negative for MND and positive for AONF. Vacuum filtration of the mixture through a fluoroplastic filter (pore diameter of 0.6 µm) formed discs with a diameter of 40 mm with subsequent heat treatment at 300 °C to impart structural stability to the composite. Using scanning electron microscopy (SEM), it was revealed that the resulting composite has a network structure in which the MND particles are distributed over the AONF surface. It was established that MND incorporated into the composite catalyze the azo coupling reaction (phenol - 4-aminoantipyrine - H2O2) with the formation of a colored product (quinoneimine). The applicability of the composite for the multiple detection of phenol in aqueous samples is demonstrated.

About the authors

N. O. Ronzhin

Institute of Biophysics, Federal Research Center “Krasnoyarsk Scientific Center”, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: roniol@mail.ru
Russian Federation, 50, Akademgorodok, Krasnoyarsk, 660036

E. D. Posokhina

Institute of Biophysics, Federal Research Center “Krasnoyarsk Scientific Center”, Siberian Branch of the Russian Academy of Sciences; Siberian Federal University

Email: roniol@mail.ru
Russian Federation, 50, Akademgorodok, Krasnoyarsk, 660036; 79, Svobodny avenue, Krasnoyarsk, 660041

E. V. Mikhlina

Institute of Computational Modeling, Federal Research Center “Krasnoyarsk Scientific Center”, Siberian Branch of the Russian Academy of Sciences

Email: roniol@mail.ru
Russian Federation, 50/44, Akademgorodok, Krasnoyarsk, 660036

M. M. Simunin

Siberian Federal University

Email: roniol@mail.ru
Russian Federation, 79, Svobodny avenue, Krasnoyarsk, 660041

I. V. Nemtsev

Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science

Email: roniol@mail.ru
Russian Federation, 50, Akademgorodok, Krasnoyarsk, 660036

I. I. Ryzhkov

Siberian Federal University; Institute of Computational Modeling, Federal Research Center “Krasnoyarsk Scientific Center”, Siberian Branch of the Russian Academy of Sciences

Email: roniol@mail.ru
Russian Federation, 79, Svobodny avenue, Krasnoyarsk, 660041; 50/44, Akademgorodok, Krasnoyarsk, 660036

V. S. Bondar

Institute of Biophysics, Federal Research Center “Krasnoyarsk Scientific Center”, Siberian Branch of the Russian Academy of Sciences

Email: roniol@mail.ru
Russian Federation, 50, Akademgorodok, Krasnoyarsk, 660036

References

  1. Artiles M., Rout C. S., Fisher T. S. Graphene-Based Hybrid Materials and Devices for Biosensing // Advanced Drug Delivery Reviews. 2011. V. 63. P. 1352-1360. doi: 10.1016/j.addr.2011.07.005.
  2. Lad A., Agrawal Y. K. Nanodevices for Monitoring Toxicological Behavior of Therapeutic Agent // Reviews in Nanoscience and Nanotechnology. 2012. V. 1. № 3. P. 217-227. doi: 10.1166/rnn.2012.1016.
  3. Zamborini F. P., Bao L., Dasari R. Nanoparticles in Measurement Science // Analytical Chemistry. 2012. V. 84. P. 541-576. doi: 10.1021/ac203233q.
  4. Hatamie A., Zargar B., Jalali A. Copper Nanoparticles: A New Colorimetric Probe for Quick, Naked-Eye Detection of Sulfide Ions in Water Samples // Talanta. 2014. V. 121. P. 234-238. doi: 10.1016/j.talanta.2014.01.008.
  5. Yin M., Zhao L., Wei Q., et al. Rapid Colorimetric Detection of Melamine by H2O2-Au Nanoparticles // RSC Advances. 2015. V. 5. P. 32 897-32 901. doi: 10.1039/C5RA02717A.
  6. Wang Y., Hu S. Applications of Carbon Nanotubes and Graphene for Electrochemical Sensing of Environmental Pollutants // J. of Nanoscience and Nanotechnology. 2016. V. 16. P. 7852-7872. doi: 10.1166/jnn.2016.12762.
  7. Puzyr A. P., Bondar V. S. Method of Production of Nanodiamonds of Explosive Synthesis with an Increased Colloidal Stability // RU Patent № 2252192. 2005. Bull. № 14.
  8. Gibson N., Shenderova O., Luo T. J.M., et al. Colloidal Stability of Modified Nanodiamond Particles // Diamond and Related Materials. 2009. V. 18. P. 620-626. doi: 10.1016/j.diamond.2008.10.049.
  9. Ronzhin N. O., Baron A. V., Mamaeva E. S., et al. Nanodiamond-Based Tests Systems for Biochemical Determination of Glucose and Cholesterol // J. of Biomaterials and Nanobiotechnology. 2013. V. 4. P. 242-246. doi: 10.4236/jbnb.2013.43030.
  10. Ronzhin N. O., Puzyr A. P., Bondar V. S. Detonation Nanodiamonds as a New Tool for Phenol Detection in the Aqueous Medium // J. of Nanoscience and Nanotechnology. 2018. V. 18. P. 5448-5453. doi: 10.1166/jnn.2018.15382.
  11. Solodovnichenko V. S., Lebedev D. V., Bykanova V. V., et al. Carbon Coated Alumina Nanofiber Membranes for Selective Ion Transport // Advanced Engineering Materials. 2017. V. 19. 1700244. P. 1-9. doi: 10.1002/adem.201700244.
  12. Solodovnichenko V. S., Simunin M. M., Lebedev D. V., et al. Coupled Thermal Analysis of Carbon Layers Deposited on Alumina Nanofibers // Thermochimica Acta. 2019. V. 675. P. 164-171. doi: 10.1016/j.tca.2019.02.012.
  13. Features of Nafen alumina nanofibers. URL: http://www.anftechnology.com/nafen/
  14. Eremin A. N., Semashko T. V., Mikhailova R. V. Cooxidation of Phenol and 4-aminoantipyrin, Catalyzed by Polymers and Copolymers of Horseradish Root Peroxidase and Penicillium funiculosum 46.1 Glucose Oxidase // Applied Biochemistry and Microbiology. 2006. V. 42. P. 399-408. doi: 10.1134/S0003683806040119.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies