Investigation of electromagnetic wave transmission line based on coupled dielectric resonators

Cover Page

Cite item

Full Text

Abstract

An analogue of optical waveguide consisting of metallic nanoparticles chain was investigated using modified cylindrical dielectric resonators (DR) in the microwave range. The two lowest resonances of the DR correspond to the dipole and quadrupole modes of oscillations similar to plasma oscillations in spherical nanoparticles. It is shown that a waveguide consisting of seven resonators has high frequency selective properties and relatively low losses, if the resonances of quadrupole modes are used to form its bandwidth. The characteristics of the studied waveguide remain almost unchanged at its bending by 90°. Cross-section of the main part of energy localization in waveguide is 5 times less than the length of the electromagnetic wave, which roughly corresponds to the optical waveguides based on plasmon oscillations in nanoparticles.

About the authors

B. A. Belyaev

Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences; Siberian Federal University

Author for correspondence.
Email: belyaev@iph.krasn.ru
Russian Federation, 50, Akademgorodok, Krasnoyarsk, 660036; 79, Svobodny avenue, Krasnoyarsk, 660041

K. V. Lemderg

Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences; Siberian Federal University

Email: belyaev@iph.krasn.ru
Russian Federation, 50, Akademgorodok, Krasnoyarsk, 660036; 79, Svobodny avenue, Krasnoyarsk, 660041

V. F. Shabanov

Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology

Email: belyaev@iph.krasn.ru

Academician of the Russian Academy of Sciences

Russian Federation, 50, Akademgorodok, Krasnoyarsk, 660036; 10, Chaikovskogo street, Krasnoyarsk, 660014

References

  1. Zou Sh., Schatz G.C. Metal Nanoparticle Array Waveguides: Proposed Structures for Subwavelength Devices // Phys. Rev. B. 2006. V. 74. P. 125 111-1-125 111-5.
  2. Markel V.A., Sarychev A.K. Propagation of Surface Plasmons in Ordered and Disordered Chains of Metal Nanospheres // Phys. Rev. B. 2007. V. 75. P. 085 426-1-085 426-11.
  3. Jacak W., Krasnyj J., Jacak J., Chepok A., Jacak L., Donderowicz W., Hu D.Z., Schaadt D.M. Undamped Collective Surface Plasmon Oscillations along Metallic Nanosphere Chains // J. Appl. Phys. 2010. V. 108. P. 084 304-1-084 304-12.
  4. Belyaev B.A., Tyurnev V.V. Resonances of Electromagnetic Oscillations in a Spherical Metal Nanoparticle // Microwave and Optical Technology Letters. 2016. V. 58. № 8. P. 1883-1886.
  5. Бабин В.М., Воробьев В.В., Медведев А.С., Мирончук Е.С., Нариц А.А., Кондорский А.Д. Спектральные особенности распространения электромагнитного поля вдоль цепочки наночастиц // Краткие сообщения по физике ФИАН. 2013. Т. 5. С. 23-28.
  6. Syms R.R.A., Young I.R., Solymar L. Low-Loss Magneto-Inductive Waveguides // J. Phys. D: Appl. Phys. 2006. № 39. P. 3945-3951.
  7. Беляев Б.А., Тюрнев В.В., Шабанов В.Ф. Оптический полосно-пропускающий фильтр на основе трехкомпонентной многослойной структуры // ДАН. 2014. Т. 456. № 4. С. 413-416.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies