Electrodeposition of platinum from carbon dioxide based supercritical electrolyte

Cover Page

Cite item

Full Text

Abstract

For the first time, the electrodeposition of platinum from a carbon dioxide-based supercritical electrolyte with the addition of acetonitrile as a co-solvent and tetrabutylammonium tetrafluoroborate salt was studied.  Dimethyl (1,5-cyclooctadiene) platinum is used as a precursor. It has been established that as a result of potentiostatic electrodeposition, not a continuous film is formed, but agglomerates of densely packed platinum nanoparticles.

About the authors

E. D. Ursov

Lomonosov Moscow State University

Email: kondratenko@polly.phys.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

M. S. Kondratenko

Lomonosov Moscow State University

Author for correspondence.
Email: kondratenko@polly.phys.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

M. O. Gallyamov

Lomonosov Moscow State University; Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: kondratenko@polly.phys.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991; 28, Vavilova street, Moscow, 119991

References

  1. Bartlett P.N., Cook D.A., George M.W., et al. Electrodeposition from Supercritical Fluids // Phys. Chem. Chem. Phys. 2014. V. 16. P. 9202-9219. doi: 10.1039/c3cp54955k.
  2. Ke J., Su W., Howdle S.M., et al. Electrodeposition of Metals from Supercritical Fluids // Proc. Natl. Acad. Sci. 2009. V. 106. P. 14768-14772. doi: 10.1073/pnas.0901986106.
  3. Cook D., Bartlett P.N., Zhang W., et al. The Electrodeposition of Copper from Supercritical CO2/Acetonitrile Mixtures and from Supercritical Trifluorome-thane // Phys. Chem. Chem. Phys. 2010. V. 12. P. 11744. doi: 10.1039/c004227g.
  4. Sakamoto K., Nakabayashi K., Fuchigami T. Electrochemical and Photoelectrochemical Behaviors of Polythiophene Nanowires Prepared by Templated Electrodeposition in Supercritical Fluids // Electrochemistry. 2013. V. 81. P. 328-330. doi: 10.5796/electroche-mistry.81.328.
  5. Atobe M., Yoshida N., Sakamoto K., et al. Preparation of Highly Aligned Arrays of Conducting Polymer Nanowires Using Templated Electropolymerization in Supercritical Fluids // Electrochim. Acta. 2013. V. 87. P. 409-415. doi: 10.1016/j.electacta.2012.09.032.
  6. Chuang H.-C., Chang T.-S., Sanchez J. Fabrication of High Aspect Ratio NiP Nanowires from Blind-Hole AAO Templates by sc-CO2 Electroless Plating // Mater. Lett. 2019. V. 236. P. 657-660. doi: 10.1016/j.matlet.2018.11.037.
  7. Bartlett P.N., Cook D.A., Hasan M.M., et al. Supercritical Fluid Electrodeposition, Structural and Electrical Characterisation of Tellurium Nanowires // RSC Adv. 2017. V. 7. P. 40 720-40 726. doi: 10.1039/C7RA07092F.
  8. Lodge A.W., Hasan M.M., Bartlett P.N., et al. Electrodeposition of Tin Nanowires from a Dichloromethane Based Electrolyte // RSC Adv. 2018. V. 8. P. 24 013-24 020. doi: 10.1039/C8RA03183E.
  9. Grigor’ev T.E., Said-Galiev E.E., Nikolaev Y.A., et al. Electrocatalysts for Fuel Cells Synthesized in Supercritical Carbon Dioxide // Nanotechnol. Russ. 2011. V. 6. P. 311-322. doi: 10.1134/S1995078011030062.
  10. Abbott A.P., Eardley C.A. Electrochemical Reduction of CO2 in a Mixed Supercritical Fluid // J. Phys. Chem. B. 2000. V. 104. P. 775-779. doi: 10.1021/jp9932867.
  11. Plyasova L.M., Molina I.Y., Gavrilov A.N., et al. Electrodeposited Platinum Revisited: Tuning Nanostructure Via the Deposition Potential // Electrochim. Acta. 2006. V. 51. P. 4477-4488. doi: 10.1016/j.electacta.2005.12.027.
  12. Scharifker B., Hills G. Theoretical and Experimental Studies of Multiple Nucleation // Electrochim. Acta. 1983. V. 28. P. 879-889. doi: 10.1016/0013-4686(83)85163-9.
  13. Trasatti S., Petrii O.A. Real Surface Area Measurements in Electrochemistry // Pure Appl. Chem. 1991. V. 63. Р. 711-734. doi: 10.1351/pac199163050711.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences