Optimum trajectories for an Earth–asteroid–Earth mission with a high thrust flight

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The trajectories of a mission to an asteroid with the presence of a spacecraft (SC) near the asteroid for some time and including a return to the Earth have been studied. A two-stage method of constructing optimum (with respect to the maximum of the useful SC mass) interplanetary trajectories of an Earth–asteroid–Earth mission with high thrust engines has been developed: in the central Newtonian field of the Sun’s attraction at the first stage and with allowance for disturbances at the second stage. An algorithm of constructing conjugate functions for the case of maximizing the useful mass has been designed. The optimum trajectories for the Earth-Apophis-Earth mission have been constructed and analyzed. The possibility in principle of organizing the Earth-Apophis-Earth space mission based on the "Soyuz" and "Zenit" launch vehicles and "Fregat" upper stage for a flight has been demonstrated.

Full Text

Restricted Access

About the authors

V. V. Ivashkin

Institute for Applied Mathematics of the Russian Academy of Sciences; Bauman Moscow State Technical University

Author for correspondence.
Email: ivashkin@keldysh.ru
Russian Federation

Anqi Lang

Bauman Moscow State Technical University; Xi’an Jiaotong University

Email: ivashkin@keldysh.ru
Russian Federation, Moscow; China

References

  1. Циолковский К.Э. Исследование мировых пространств реактивными приборами [1911–1912 гг.] Пионеры ракетной техники. Кибальчич. Циолковский. Цандер. Кондратюк. Избранные труды. М.: Наука, 1964.
  2. Sandford S. A. The Power of Sample Return Missions-Stardust and Hayabusa [J] // Proc. Intern. Astron. Union. 2011. V. 7(S280). P. 275–287.
  3. Ajluni T., Everett D., Linn T., et al. OSIRIS-REx, Returning the Asteroid Sample [C] // Aerospace Conf. IEEE. 2015. P. 1–15.
  4. Автоматические космические аппараты для фундаментальных и прикладных научных исследований / Под. ред. Г.М. Полищука, К.М. Пичхадзе М.: Изд-во МАИ-ПРИНТ, 2010. 660 c.
  5. Ивашкин В.В., Лан А. Анализ орбитального движения космического аппарата вокруг астероида Апофис // ДАН. 2016. T. 468. № 4. C. 403–407.
  6. Ивашкин В.В., Лан А. Анализ орбитального движения спутника астероида Апофис // Косм. исслед. 2017. Т. 55. № 4. С. 268–277.
  7. Hohmann W. Die Erreichbarkeit der Himmelskörper. München; B.: Druck und Verlag R. Oldenbourg, 1926. 88 p.
  8. Ильин В.А., Кузмак Г.Е. Оптимальные перелеты космических аппаратов с двигателями большой тяги. М.: Наука, 1976. 744 с.
  9. Соболь И.М., Статинков Р.Б. Выбор оптимальных параметров в задачах со многими критериями. М.: Наука, 1981. 110 с.
  10. Панченко Т.В. Генетические алгоритмы: учебно-методическое пособие. Астрахань: Издат. дом “Астрахан. ун-т”, 2007. 87 с.
  11. Nocedal J.; Wright S. J. Numerical Optimization. 2nd ed. N.Y.: Springer, 2006. ISBN 978-0-387-30303-1.
  12. Ивашкин В.В., Лан А. Анализ оптимальности траекторий экспедиции Земля–астероид–Земля. Препр. ИПМ им. М.В. Келдыша. M., 2017. № 113. 25 с. doi: 10.20948/prepr 2017-113.
  13. Аббасов М.Э. Методы оптимизации: Учеб. пособие. СПб.: Изд-во “ВВМ”, 2014. 64 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Isolines of useful mass in the plane of times t1 and ∆t12 for the variant Dt∑ = 690 days, ∆t23 = 7 days. in the vicinity of the optimum.

Download (477KB)
3. Fig. 2. Dependences of the velocity Vхар and masses mf, mp on time ∆t23.

Download (272KB)
4. Fig. 3. Change of the modulus of the basis vector p (t) on trajectory No. 19: (a) —flight from the Earth to Apophis

Download (126KB)
5. Fig. 3. (b) - the flight from Apophis to the Earth.

Download (143KB)

Copyright (c) 2019 Russian Academy of Sciences