The structure and thermal properties of tmfe2o4 at different values of temperature and oxygen pressure
- Authors: Vedmid L.B.1,2, Fedorova O.M.1, Dimitrov V.M.1, Balakirev V.F.1
-
Affiliations:
- Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences
- Ural Federal University
- Issue: Vol 484, No 2 (2019)
- Pages: 177-180
- Section: Physical chemistry
- URL: https://journals.eco-vector.com/0869-5652/article/view/11722
- DOI: https://doi.org/10.31857/S0869-56524842177-180
- ID: 11722
Cite item
Abstract
The stability range of TmFe2O4 has been studied under conditions of low oxygen pressure in the gas phase at the temperature of 1090 °C. The thermodynamic characteristics of thulium ferrite are calculated from experimental data obtained during dissociation of the compound in the temperature range of 750–900 °C. Structural transformations are determined in the temperature range from –140 to 140 °C. They are associated with charge ordering in this compound.
Full Text

About the authors
L. B. Vedmid
Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences; Ural Federal University
Author for correspondence.
Email: elarisa100@mail.ru
Russian Federation, Ekaterinburg
O. M. Fedorova
Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences
Email: elarisa100@mail.ru
Russian Federation, Ekaterinburg
V. M. Dimitrov
Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences
Email: elarisa100@mail.ru
Russian Federation, Ekaterinburg
V. F. Balakirev
Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences
Email: elarisa100@mail.ru
Russian Federation, Ekaterinburg
References
- Pyatakov A.P., Zvezdin A.K. // Phys. Uspekhi. 2012. V. 55. P. 557–581.
- Kim J., Lee B.W. // J. Magnetics. 2010. Т. 15. № 1. С. 29–31.
- Kambe T., Fukada Y., Kano J., Nagata T., Okasaki H., Yokoya T., Wakimoto S., Kakurai K., Ikeda N. // Phys. Rev. Lett. 2013. V. 110. 117602.
- Kimizuka N., Katsura T. // J. Solid State Chem. 1975. V. 13. P. 176–181.
- Ikeda N., Ohsumi H., Ohwada K., Ishii K., Inami T., Kakurai K., Murakami Y., Yoshii K., Mori S., Horibe Y., Kito H. // Na-ture. 2005. V. 436. P. 1136.
- Ikeda N., Kohn K., Myouga N., Takahashi E., Kiton H., Takekawa S. // J. Phys. Soc. Jap. 2000. V. 69. P. 1526.
- Янкин А.М., Ведмидь Л.Б. Способ формирования газовой смеси для анализа и обработки материалов при пере-менном давлении. Пат. РФ. № 2548949. М., 2015.
- Ведмидь Л.Б., Янкин А.М., Козин В.М., Федорова О.М. // ЖФХ. 2017. Т. 91. № 8. С. 1273–1276.
- Ведмидь Л.Б., Димитров В.М., Федорова О.М. // ДАН. 2018. T. 478. № 6. С. 652–656.
- Larson A.C., Von Dreele R.B. General Structure Analysis System (GSAS). LANSCE, MS-H805. Los Alamos: Los Alamos Nat. Lab. 1986. NM 87545.
- Kato K., Kawada I., Kimizuka N., Katsura T. // Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 1975. V. 141. P. 314.
- Безносиков Б.В., Александров К.С. // Перспективные материалы. 2007. № 1. С. 46–49.
- Blasco J., Lafuerza S., Garsia J., Subias G. // Phys. Rev. B. 2014. V. 90. 094119.
- Янкин А.М., Балакирев В.Ф., Ведмидь Л.Б., Федорова О.М. // ЖФХ. 2003. Т. 77. № 11. С. 2108–2111.
Supplementary files
