New proton-conducting polydiimidazopyridine based membrane for ht-pem fuel cell

Cover Page

Cite item

Full Text

Abstract

Polydiimidazopyridine was synthesized from 2,3,5,6-tetraaminopyridine and 2,5-dihydroxyterephtalatic acid in polyphosphoric acid and characterized. Polydiimidazopyridine possesses high viscosity, high thermal oxidation resistance and excellent film-forming properties. The polymer was processed from reaction mixture in polyphosphoric acid into proton conducting membranes. The membranes possess higher proton conductivity than for many known membranes at 20-200 °C.

About the authors

I. I. Ponomarev

Institute of Organoelement Compounds of the Russian Academy of Sciences

Author for correspondence.
Email: gagapon@ineos.ac.ru
Russian Federation, 28, Vavilova street, Moscow, 119991

D. Yu. Razorenov

Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: gagapon@ineos.ac.ru
Russian Federation, 28, Vavilova street, Moscow, 119991

Iv. I. Ponomarev

Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: gagapon@ineos.ac.ru
Russian Federation, 28, Vavilova street, Moscow, 119991

Yu. A. Volkova

Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: gagapon@ineos.ac.ru
Russian Federation, 28, Vavilova street, Moscow, 119991

K. M. Skupov

Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: kskupov@gmail.com
Russian Federation, 28, Vavilova street, Moscow, 119991

A. A. Lysova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: gagapon@ineos.ac.ru
Russian Federation, 31, Leninsky prospekt, Moscow,119991

A. B. Yaroslavtsev

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: gagapon@ineos.ac.ru

Corresponding member of the Russian Academy of Sciences

Russian Federation, 31, Leninsky prospekt, Moscow,119991

References

  1. Коршак В.В. Термостойкие полимеры. М., 1969. С. 411.
  2. Sikkema D.J. // Polymer. 1998. V. 39. P. 5981.
  3. Lammers M., Klop E.A., Northolt M.G., Sikkema D. J. // Polymer. 1998. V. 39. P. 5999.
  4. Li Q., Aili D., Hjuler H.A., Jensen J.O. High Temperature Polymer Electrolyte Membrane Fuel Cells, Approaches, Status and Perspectives. Cham: Springer, 2016. P. 545.
  5. Пономарев И.И., Разоренов Д.Ю., Пономарев Ив.И., Волкова Ю.А., Скупов К.М., Лысова А.А., Ярославцев А.Б. // ДАН. 2019. Т. 485. № 1. С. 44-47.
  6. Asensio J.A., Rborro S., Gomez-Romero P. // J. Polym. Sci. A. 2002. V. 40. P. 3703.
  7. Dang T.D. Molecular/Nano Level Approaches for the Enhancement of Axial Compressive Properties of Rigid-Rod Polymers. PhD thesis. University of Cincinnati. 2009. P. 159.
  8. Пономарев И.И., Рыбкин Ю.Ю., Горюнов Е.И., Петровский П.В., Лысенко К.А. // Изв. АН. Сер. хим. 2004. № 9. P. 1937.
  9. Лысова А.А., Пономарев И.И., Ярославцев А.Б. // ЖНХ. 2012. Т. 57. С. 3.
  10. Kondratenko M.S., Ponomarev I.I., Gallyamov M.O., Razorenov D.Y., Volkova, Y.A. Kharitonov E.P., Khokhlov A.R. // Beilstein J. Nanotechnol. 2013. V. 4. P. 481.
  11. Skupov K.M., Ponomarev I.I., Razorenov D.Y., Zhigalina V.G., Zhigalina O.M., Ponomarev I.I., Volkova Y.A., Volfkovich Y.M., Sosenkin V.E. // Macromol. Symp. 2017. V. 375. P. 1600188.
  12. Пономарев И.И., Разоренов Д.Ю., Пономарев Ив.И., Волкова Ю.А., Скупов К.М. // Электрохимия. 2014. Т. 50. С. 773.
  13. Shamardina O., Chertovich A., Kulikovsky A.A., Khokhlov A.R. // Int. J. Hydrogen Energy. 2010. V. 35. P. 9954.
  14. Kondratenko M.S., Gallyamov M.O., Tyutyunnik O.A., Kurbakova I.V., Chertovich A.V., Malinkina E.K., Tsirlina G.A. // J. Electrochem. Soc. 2015. V. 162. P. F587.
  15. Kondratenko M.S., Gallyamov M.O., Khokhlov A.R. // Int. J. Hydrogen Energy. 2012. V. 37. P. 2596.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences