Melatonin inhibits peroxide production in plant mitochondria

Cover Page

Cite item

Full Text

Abstract

The effect of melatonin on respiration and production (release) of hydrogen peroxide during succinate oxidation in mitochondria isolated from lupine cotyledons and epicotyls of pea seedlings was studied. It has been shown for the first time that melatonin (10-7-10-3 M) had a significant inhibitory effect on the production of peroxide by plant mitochondria, which was characterized by concentration dependence and species specificity. At the same time, melatonin (at a concentration of up to 100 microns) had virtually no effect on mitochondrial respiration rate and respiratory control coefficient. The results confirm the antioxidant function of melatonin and indicate that it is involved in the regulation of ROS levels and maintenance of redox balance in plant mitochondria.

About the authors

P. A. Butsanets

K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences

Email: ag-shugaev@ifr.moscow
Russian Federation, 35, Botanicheskaya street, Moscow, 127276

A. S. Baik

K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences

Email: ag-shugaev@ifr.moscow
Russian Federation, 35, Botanicheskaya street, Moscow, 127276

A. G. Shugaev

K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences

Author for correspondence.
Email: ag-shugaev@ifr.moscow
Russian Federation, 35, Botanicheskaya street, Moscow, 127276

Vl. V. Kuznetsov

K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences

Email: ag-shugaev@ifr.moscow

Corresponding Member of the Russian Academy of Sciences

Russian Federation, 35, Botanicheskaya street, Moscow, 127276

References

  1. Murphy M.P. // Biochem. J. 2009. V. 417. P. 1-13.
  2. Андреев А.Ю., Кушнарева Ю.Е., Мерфи А.Н. и др. // Биохимия. 2015. Т. 80. С. 612-630.
  3. Van Breusegem F., Dat J.F. // Plant Physiol. 2006. V. 141. P. 384-390.
  4. Huang S., Van Aken O., Schwarzlander M., et al. // Plant Physiol. 2016. V. 171. P. 1551-1559.
  5. Wang Y., Berkowitz O., Selinski J., et al. // Free Radical Biol. Med. 2018. V. 122. P. 28-39.
  6. Lopez A., Garsia J.A., Escames G., et al. // J. Pineal Res. 2009. V. 46. P. 188-198.
  7. Tan D.-X., Manchester L.C., Rosales-Corral S.A., et al. // J. Pineal Res. 2012. V. 54. P. 127-138.
  8. Reiter J.R., Tan D.X., Rosales-Corral S., et al. // Molecules. 2018. V. 23. E509.
  9. Fan J., Xie Y., Zhang Z., Chen L. // Int. J. Mol. Sci. 1918. V. 19. P. 1528-1542.
  10. Шугаев А.Г., Буцанец П.А., Шугаева Н.А. // Физиол. растений. 2014. Т. 61. С. 555-564.
  11. Генерозова И.П., Маевская С.Н., Шугаев А.Г. // Физиол. растений. 2009. Т. 56. С. 45-52.
  12. Chance B., Williams G.R. // Adv. Enzymol. 1956. V. 17. P. 65-134.
  13. Miva S., Treumann A., Bell A., et al. // Free Rad. Biol. Med. 2014. V. 90. P. 173-183.
  14. Belt K., Huang S., Thatcher L.F., et al. // Plant Physiol. 2017. V. 173. P. 2029-2040.
  15. Tan D.-X., Reiter R.J. // Melatonin Res. 2019. V. 2. P. 44-66.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies