Magnificamide is a new effective mammalian a-amylase inhibitor

Cover Page

Cite item

Full Text

Abstract

Recombinant analog of sea anemone Heteractis magnifica peptide was obtained and kinetic parameters of its interaction with mammalian α-amylases were determined. Magnificamide inhibits α-amylases significantly stronger than a medical drug acarbose (PrecoseTM or GlucobayTM). Magnificamide is assumed to find application as a drug for prevention and treatment of metabolic disorders and type 2 diabetes mellitus.

About the authors

O. V. Sintsova

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences

Author for correspondence.
Email: sintsova0@gmail.com
Russian Federation, 159, 100-let Vladivostoku prospekt, Vladivostok, 690022

E. V. Leychenko

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences

Email: sintsova0@gmail.com
Russian Federation, 159, 100-let Vladivostoku prospekt, Vladivostok, 690022

I. N. Gladkikh

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences

Email: sintsova0@gmail.com
Russian Federation, 159, 100-let Vladivostoku prospekt, Vladivostok, 690022

A. P. Kalinovskii

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences; Far Eastern Federal University

Email: sintsova0@gmail.com
Russian Federation, 159, 100-let Vladivostoku prospekt, Vladivostok, 690022; 8, Sukhanova St., Vladivostok, Russia, 690950

M. M. Monastyrnaya

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences

Email: sintsova0@gmail.com
Russian Federation, 159, 100-let Vladivostoku prospekt, Vladivostok, 690022

E. P. Kozlovskaya

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences

Email: sintsova0@gmail.com
Russian Federation, 159, 100-let Vladivostoku prospekt, Vladivostok, 690022

References

  1. Alam U., Asghar O., Azmi S. // Handbook. Clin. Neurol. 2014. V. 126. P. 211-222.
  2. Pandey A., Chawla S., Guchhait P. // IUBMB Life. 2015. V. 67. P. 506-513.
  3. Aye T., Levitsky L.L. // Curr. Opin. Pediatr. 2003. V. 15. P. 411-415.
  4. Temneanun O.R., Trandafir L.M., Purcarea M.R. // J. Med. Life. 2016. V. 9. P. 235-239.
  5. Scheen A.J. // Drugs. 2003. V. 63. P. 933-951.
  6. Chiasson J.-L., Josse R.G., Gomis R., et al. // Lancet. 2002. V. 359. P. 2072-2077.
  7. Wu H., Liu J., Lou Q., et al. // Medicine (Baltimore). 2017. V. 96. P. 7533.
  8. Fosgerau K., Hoffmann T. // Drug Discov. Today. 2015. V. 20. P. 122-128.
  9. Sintsova O., Gladkikh I., Chausova V., et al. // J. Proteomics. 2018. V. 173. P. 12-21.
  10. Sintsova O.V., Monastyrnaya M.M., Pislyagin E.A., et al. // Russ. J. Bioorganic Chem. 2015. V. 41. P. 590-596.
  11. Monastyrnaya M., Peigneur S., Zelepuga E., et al. // Mar. Drugs. 2016. V. 14. P. 229.
  12. Morrison J.F. // Biochim. Biophys. Acta-Enzymol. 1969. V. 185. P. 269-286.
  13. Yoon S.H., Robyt J.F. // Carbohydr. Res. 2003. V. 338. P. 1969-1980.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences