Magnificamide is a new effective mammalian a-amylase inhibitor

Cover Page

Cite item

Full Text

Abstract

Recombinant analog of sea anemone Heteractis magnifica peptide was obtained and kinetic parameters of its interaction with mammalian α-amylases were determined. Magnificamide inhibits α-amylases significantly stronger than a medical drug acarbose (PrecoseTM or GlucobayTM). Magnificamide is assumed to find application as a drug for prevention and treatment of metabolic disorders and type 2 diabetes mellitus.

About the authors

O. V. Sintsova

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences

Author for correspondence.
Email: sintsova0@gmail.com
Russian Federation, 159, 100-let Vladivostoku prospekt, Vladivostok, 690022

E. V. Leychenko

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences

Email: sintsova0@gmail.com
Russian Federation, 159, 100-let Vladivostoku prospekt, Vladivostok, 690022

I. N. Gladkikh

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences

Email: sintsova0@gmail.com
Russian Federation, 159, 100-let Vladivostoku prospekt, Vladivostok, 690022

A. P. Kalinovskii

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences; Far Eastern Federal University

Email: sintsova0@gmail.com
Russian Federation, 159, 100-let Vladivostoku prospekt, Vladivostok, 690022; 8, Sukhanova St., Vladivostok, Russia, 690950

M. M. Monastyrnaya

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences

Email: sintsova0@gmail.com
Russian Federation, 159, 100-let Vladivostoku prospekt, Vladivostok, 690022

E. P. Kozlovskaya

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences

Email: sintsova0@gmail.com
Russian Federation, 159, 100-let Vladivostoku prospekt, Vladivostok, 690022

References

  1. Alam U., Asghar O., Azmi S. // Handbook. Clin. Neurol. 2014. V. 126. P. 211-222.
  2. Pandey A., Chawla S., Guchhait P. // IUBMB Life. 2015. V. 67. P. 506-513.
  3. Aye T., Levitsky L.L. // Curr. Opin. Pediatr. 2003. V. 15. P. 411-415.
  4. Temneanun O.R., Trandafir L.M., Purcarea M.R. // J. Med. Life. 2016. V. 9. P. 235-239.
  5. Scheen A.J. // Drugs. 2003. V. 63. P. 933-951.
  6. Chiasson J.-L., Josse R.G., Gomis R., et al. // Lancet. 2002. V. 359. P. 2072-2077.
  7. Wu H., Liu J., Lou Q., et al. // Medicine (Baltimore). 2017. V. 96. P. 7533.
  8. Fosgerau K., Hoffmann T. // Drug Discov. Today. 2015. V. 20. P. 122-128.
  9. Sintsova O., Gladkikh I., Chausova V., et al. // J. Proteomics. 2018. V. 173. P. 12-21.
  10. Sintsova O.V., Monastyrnaya M.M., Pislyagin E.A., et al. // Russ. J. Bioorganic Chem. 2015. V. 41. P. 590-596.
  11. Monastyrnaya M., Peigneur S., Zelepuga E., et al. // Mar. Drugs. 2016. V. 14. P. 229.
  12. Morrison J.F. // Biochim. Biophys. Acta-Enzymol. 1969. V. 185. P. 269-286.
  13. Yoon S.H., Robyt J.F. // Carbohydr. Res. 2003. V. 338. P. 1969-1980.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies