БИОРАЗНООБРАЗИЕ И БИОРЕСУРСЫ ГЛУБОКОВОДНЫХ ЭКОСИСТЕМ СЕВЕРО-ЗАПАДНОЙ ЧАСТИ ТИХОГО ОКЕАНА

Обложка

Цитировать

Полный текст

Аннотация

В статье рассматриваются современные проблемы изучения биоразнообразия и биоресурсов Мирового океана, а также задачи инвентаризации биоразнообразия и биоресурсов океанских глубин. Приводятся данные по результатам серии глубоководных экспедиций ННЦМБ ДВО РАН по оценке биоразнообразия в наиболее глубоководных районах дальневосточных морей и прилегающих акваторий северо-западной части Тихого океана. Рассматриваются результаты экспедиционных работ консорциума научных организаций в рамках комплексного проекта РАН “Фундаментальные проблемы изучения и сохранения глубоководных экосистем в потенциально рудоносных районах северо-западной части Тихого океана” (проект № 3.1902.21.0012). Приводится описание ряда уникальных глубоководных экосистем в местах залегания ценных минеральных ресурсов на морском дне и районах активного рыболовства. Рассматриваются возможности сохранения этих экосистем путём ограничения применений технических средств, травмирующих донные ландшафты, а также придания им природоохранного статуса.

Об авторах

А. В. Адрианов

Национальный научный центр морской биологии им. А.В. Жирмунского ДВО РАН; Московский государственный университет имени М.В. Ломоносова

Email: avadr@mail.ru
Россия, Владивосток; Россия, Москва

В. В. Мордухович

Национальный научный центр морской биологии им. А.В. Жирмунского ДВО РАН; Дальневосточный федеральный университет

Автор, ответственный за переписку.
Email: vvmara@mail.ru
Россия, Владивосток; Россия, Владивосток

Список литературы

  1. Williamson M. Marine biodiversity in its global context // Marine Biodiversity. Patterns and Processes / Eds. R.F.G. Ormond, J.D. Gage, M.V. Angel. Cambridge Univ. Press, 1999. P. 1–17.
  2. May R.M. Bottoms up for the ocean // Nature. 1993. V. 357. P. 278–279.
  3. Bar-On Y.M., Phillips R., Milo R. The biomass distribution on Earth // PNAS. 2018. V. 115 (25). P. 6506–6511. www.pnas.org/cgi/doi/10.1073/pnas.1711842115
  4. Адрианов А.В. Современные проблемы изучения морского биоразнообразия // Биология моря. 2004. Т. 30. № 1. С. 3–19.
  5. Wilson R.W. et al. Contribution of Fish to the Marine Inorganic Carbon Cycle // Science. 2009. V. 323. P. 359–362.
  6. Irigoien X., Klevjer T.A., Rostad A. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean // Nature Communications. 2014. V. 5. Art. 3271. https://doi.org/10.1038/ncomms4271
  7. Proud R., Handegard N.O., Kloser R.J. et al. From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass // ICES Journal of Marine Sciences. 2019. V. 76. № 3. P. 718–733. https://doi.org/10.1093/icesjms/fsy037
  8. Hidalgo M., Browman H. Developing the knowledge base needed to sustainably manage mesopelagic resources // ICES Journal of Marine Sciences. 2019. V. 76. № 3. P. 609–615. https://doi.org/10.1093/icesjms/fsz067
  9. Musilova Z., Cortesi F., Matschiner M. et al. Vision using multiple distinct rod opsins in deep-sea fishes // Science. 2019. V. 364. P. 588–592. https://doi.org/10.1126/science.aav4632
  10. Проблемы и перспективы освоения биоресурсов Мирового океана в интересах российской экономики // Аналитический вестник. № 25(739). Аналитическое управление Аппарата Совета Федерации ФС РФ. М., 2019.
  11. Vereshchaka A.L., Lunina A.A., Sutton T. Assessing Deep-Pelagic Shrimp Biomass to 3000 m in The Atlantic Ocean and Ramifications of Upscaled Global Biomass // Scientific Reports. 2019. V. 9. Art. 5946. https://doi.org/10.1038/s41598-019-42472-8
  12. Skropeta D., Wei L. Recent advances in deep-sea natural products // Natural Products Report. 2014. V. 18. P. 54–57. https://doi.org/10.1039/c3np/0118b
  13. Katanaev V.I., Falco S.D., Khotimchenko Y.S. The Anticancer Drug Discovery Potential of marine Invertebrates from Russian Pacific // Marine Drugs. 2019. V. 17. Art. 474. https://doi.org/10.3390/md17080474
  14. Геология будущего. Освоение ресурсов Мирового океана. Росгеология, 2018. www.rosgeo.com
  15. Bardi U. Extracting Minerals from Seawater: An Energy Analysis // Sustainability. 2010. № 2. P. 980–992. https://doi.org/10.3390/su20140980
  16. Морозов Е.Г. Краткие итоги антарктической экспедиции 2021–2022 гг. 87-й рейс НИС “Академик Мстислав Келдыш” // Океанологические исследования. 2022. Т. 50. № 1. С. 126–128.
  17. Malyutina M.V., Brandt A. Introduction to SoJaBio (Sea of Japan Biodiversity Studies) // Deep-Sea Research Part II. 2013. V. 86–87. P. 1–9.
  18. Adrianov A.V., Ivin V.V., Malyutina M.V. Deep-sea investigations of the A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences // Proceedings of the Russian-German Workshop “Future Vision II” – Deep-sea Investigations in the Northwestern Pacific, Vladivostok, Russia, September 6–12, 2013. Vladivostok: Dalnauka. P. 15–20.
  19. Brandt A., Malyutina M.V. The German-Russian deep-sea expedition KuramBio (Kurile Kamchatka biodiversity studies) on board of the RV Sonne in 2012 following the footsteps of the legendary expeditions with RV Vityaz // Deep-Sea Research Part II. 2015. V. 111. P. 1–9.
  20. Brandt A., Elsner N., Brenke N. et al. Abyssal macrofauna of the Kuril-Kamchatka Trench area collected by means of a camera-epibenthic sledge (Northwest Pacific) // Deep Sea Research Part II. 2015. V. 111. P. 175–188. https://doi.org/10.1016/j.dsr2.2014.11.002
  21. Adrianov A.V., Ivin V.V., Malyutina M.V. Deep-sea investigations in the North-West Pacific: marine expeditions of the A.V. Zhirmunsky Institute of Marine Biology FEB RAS // Unique Marine Ecosystems: Modern Technologies of Exploration and Conservation for Future Generations. Abstracts of International Conference, August 4–7, 2016. Vladivostok, Russia. P. 9–12.
  22. Malyutina M.V., Chernyshev A.V., Brandt A. Introduction to the SokhoBio (Sea of Okhotsk Biodiversity Studies) expedition 2015 // Deep-Sea Research Part II. 2018. V. 154. P. 1–9.
  23. Brandt A., Brix S., Riehl T., Malyutina M.V. Biodiversity and biogeography of the abyssal and hadal Kuril-Kamchatka trench and adjacent NW Pacific deep-sea regions // Progress in Oceanography. 2020. V. 181. Art. 102232.
  24. Grassle J.F., Maciolek N.J. Deep-sea richness: Regional and local diversity estimates from quantitative bottom samples // American Naturalist. 1992. V. 139. P. 313–341.
  25. May R.M. Conceptual aspects of the quantification of the extent of biological diversity // Philosophical transactions of the Royal Society of London, Series B. 1994. V. 345. P. 13–20.
  26. Poore G.C.B., Wilson G.D.F. Marine species richness // Nature. 1993. V. 361. P. 597–598.
  27. Rex M.A., Stuart C.T., Hessler R.P. et al. Global-scale latitudinal patterns of species diversity in the deep-sea benthos // Nature. V. 365. P. 636–639.
  28. Snelgrove P.V.P. Marine sediments // Encyclopedia of biodiversity. N.Y: Academic Press. 2001. V. 4. P. 71–84.
  29. Кулинич Р.Г., Обжиров А.И. Барит-карбонатная минерализация, аномалии метана и геофизические поля во впадине Дерюгина (Охотское море) // Тихоокеанская геология. 2003. Т. 22. № 4. С. 35–40.
  30. Астахов А.С., Ивин В.В., Карнаух В.Н. и др. Современные геологические процессы и условия формирования баритовой залежи в котловине Дерюгина Охотского моря // Геология и геофизика. 2017. Т. 58. № 2. С. 200–214. https://doi.org/10.15372/GiG20170202
  31. Семакин В.П., Кочергин А.В., Питина Т.И. Глубинное строение глубоководных впадин Охотского моря // Геодинамика и тектонофизика. 2018. Т. 9. № 1. С. 109–122. https://doi.org/10.5800/GT-2018-9-1-0340
  32. Kharlamenko V.I., Kiyashko S.I., Sharina S.N. et al. An ecological study of two species of chemosymbiotrophic bivalve molluscs (Bivalvia: Vesicomyidae: Pliocardiinae) from the Deryugin Basin of the Sea of Okhotsk using analyses of the stable isotope ratios and fatty acid compositions // Deep Sea Research Part I. 2019. V. 150. Art. 103058. https://doi.org/10.1016/j.dsr.2019.06.004
  33. Karaseva N., Gantsevich M., Obzhirov A. et al. Correlation of the siboglinid (Annelida: Siboglinidae) distribution to higher concentrations of hydrocarbons in the Sea of Okhotsk // Marine Pollution Bulletin. 2020. V. 158. Art. 111448. https://doi.org/10/1016/j.marpolbul.2020.111448
  34. Rybakova E., Krylova E., Mordukhovich V. et al. Mega- and macrofauna of the hydrothermally active submarine Piip Volcano (the southwestern Bering Sea) // Deep Sea Research Part II. 2023. V. 208. Art. 105268. https://doi.org/10.1016/j.dsr2.2023.105268
  35. Сагалевич А.М., Торохов П.В., Матвеенков В.В. и др. Гидротермальные проявления подводного вулкана Пийпа (Берингово море) // Изв. РАН. Серия геол. 1992. № 9. С. 104–114.
  36. Галкин С.В., Сагалевич А.М. Гидротермальные экосистемы Мирового океана. Исследования с глубоководных аппаратов “Мир”. М.: ГЕОС, 2012.
  37. Galkin S.V., Mordukhovich V.V., Krylova E.M. et al. Comprehensive research of ecosystems of hydrothermal vents and cold seeps in the Bering Sea (Cruise 82 of the R/V Akademik M.A. Lavrentyev) // Oceanology. 2019. V. 59. P. 618–621. https://doi.org/10.1134/S0001437019040052
  38. Rybakova E., Galkin S., Gebruk A. et al. Vertical distribution of megafauna on the Bering Sea slope based on ROV survey // PeerJ. 2020. V. 8. Art. e8628. https://doi.org/10.7717/peerj.8628
  39. Mordukhovich V.V., Krylova E.M., Dando P.R. Introduction. Seeps and vents of the Bering Sea // Deep-Sea Research Part II. 2023. V. 209. Art. 105290.
  40. Kharlamenko V.I. Abyssal foraminifera as the main source of rare polyunsaturated fatty acids in deep-sea ecosystems // Deep-Sea Research Part II. 2018. V. 154. P. 374–382.
  41. Svetashev V.I. Investigation of Deep-Sea Ecosystems Using Marker Fatty Acids: Sources of Essential Polyunsaturated Fatty Acids in Abyssal Megafauna // Marine Drugs. 2022. V. 20. Art. 17. https://doi.org/10.3390/md20010017
  42. Rodkina S.A., Kiyashko S.I., Mordukhovich V.V. Diet of deep-sea holothurians in the Volcanologists Massif, Bering Sea, as inferred from stable isotope and fatty acid analyses // Deep Sea Research Part II. 2023. V. 208. Art. 105266. https://doi.org/10.1016/j.dsr2.2023.105266
  43. Deep-sea benthic fauna and communities in the vicinity of methane seeps and hydrothermal vents in the Bering Sea / Mordukhovich V., Krylova E., Dando P., eds. https://www.sciencedirect.com/journal/deep-sea-research-part-ii-topical-studies-in-oceanography/special-issue/104SZFTQ70Z (дата обращения 15.08.2023).
  44. Rybakova E., Krylova E., Mordukhovich V. et al. Methane seep communities on the Koryak slope in the Bering Sea // Deep-Sea Research Part II. 2022. V. 206. Art. 105203.
  45. Даутова Т.Н., Галкин С.В., Табачник К.Р. и др. Первые сведения о структуре уязвимых морских экосистем Императорского хребта – индикаторные таксоны, ландшафты, биогеография // Биология моря. 2019. Т. 45. № 6. С. 374–383.
  46. Михайлик П.Е., Ханчук А.И., Михайлик Е.В. и др. Самородное золото в железомарганцевых корках гайота Детройт (Императорский хребет, Тихий океан) // Вестник ДВО РАН. 2014. Т. 4. С. 13–24.
  47. Dyshlovoy S.A., Kudryashova E.K., Kaune M. et al. Urupocidin C: a new marine guanidine alkaloid which selectively kills prostate cancer cells via mitochondria targeting // Scientific Reports. 2020. V. 10. Art. 9764.
  48. Silchenko A.S., Avilov S.A., Kalinin V.I. Separation procedures for complicated mixtures of sea cucumber triterpene glycosides with isolation of individual glycosides, their comparison with HPLC/MS metabolomic approach, and biosynthetic interpretation of the obtained structural data // Studies in Natural Product Chemistry / Ed. Rahman A.U., Elsevier B.V. Amsterdam, The Netherlands, 2022. V. 72. P. 103–146.
  49. Kalinin V.I., Silchenko A.S., Avilov S.A., Stonik V.A. Progress в the studies of triterpene glycosides from sea cucumbers (Holothuroidea, Echinodermata) between 2017 and 2021 // Natural Product Communications. 2021. V. 16 (10). P. 1–24. https://doi.org/10.1177/1934578X211053934
  50. Ponomarenko A., Tyrtyshnaia A., Ivashkevich D. et al. Synaptamide modulates astroglial activity in mild traumatic brain injury // Marine Drugs. 2022. V. 20. Art. 538. https://doi.org/10.3390/md20080538
  51. Khotimchenko Y.S., Silachev D.N., Katanaev V. Marine natural products from the Russian Pacific as sources of drugs for neurodegenerative diseases // Marine Drugs. 2022. V. 20 (11). Art. 708. https://doi.org/10.3390/md20110708

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (387KB)
3.

Скачать (447KB)
4.

Скачать (444KB)

© А.В. Адрианов, В.В. Мордухович, 2023