Geomagnetic support for directional drilling

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The high-tech directional drilling (DD) procedure for the development of hydrocarbon resources requires high precision positioning of the drill string. Such accuracy can be achieved by navigation based on the Earth’s magnetic field (EMF), which ensures hitting a given target with an error of 3 m at a distance of 15 km. However, the EMF is characterized by multi-scale variability both in space and time. Therefore, the full stack of DD geomagnetic support includes a detailed, real-time estimation of the EMF spatio-temporal variability in the deposit region and geomagnetic activity forecast. Particularly strict control of a drill string orientation is required when drilling in the Arctic region. The article is devoted to modern technologies for effective accounting of the features of the EMF space-time structure to ensure precise navigation of the drill string.

The paper is based on the report delivered at the RAS Presidium meeting on 11 June 2024.

Full Text

Restricted Access

About the authors

A. A. Soloviev

Geophysical Center RAS; Schmidt Institute of Physics of the Earth RAS

Author for correspondence.
Email: a.soloviev@gcras.ru

член-корреспондент РАН, директор ГЦ РАН, главный научный сотрудник ИФЗ РАН

Russian Federation, Moscow; Moscow

References

  1. Poedjono B., Beck N., Buchanan A. et al. Geomagnetic Referencing in the Arctic Environment // SPE Arctic and Extreme Environments Conference and Exhibition, Moscow, Russia, October 2011. https://doi.org/10.2118/149629-MS
  2. Buchanan A., Finn C., Love J.J. et al. Geomagnetic Referencing − The Real-Time Compass for Directional Drillers // Oilfield Review. 2013, vol. 25, no. 1, pp. 32−47.
  3. Гвишиани А.Д., Лукьянова Р.Ю. Геоинформатика и наблюдения магнитного поля Земли: российский сегмент // Физика Земли. 2015. № 2. С. 3–20. doi: 10.7868/S0002333715020040 / Gvishiani A.D., Lukianova R.Y. Geoinformatics and observations of the Earth’s magnetic field: The Russian segment // Izv., Phys. Solid Earth. 2015, vol. 51, pp. 157–175. https://doi.org/10.1134/S1069351315020044
  4. Богоявленский В.И. Фундаментальные проблемы поиска, разведки и рационального освоения ресурсов горючих ископаемых Арктических и субарктических регионов России // Всероссийская конференция с международным участием “Глобальные проблемы Арктики и Антарктики”, посвящённая 90-летию cо дня рождения академика Н.П. Лавёрова (2−5 ноября 2020 г., г. Архангельск). Сб. материалов. Архангельск: ФИЦ комплексного изучения Арктики им. акад Н.П. Лавёрова РАН, 2020. C. 20−25. / Bogoyavlensky V.I. Fundamental problems of search, exploration and rational development of fossil fuel resources in the Arctic and subarctic regions of Russia // All-Russian conference with international participation “Global problems of the Arctic and Antarctic”, dedicated to the 90th anniversary of academician Nikolai Pavlovich Laverov (2−5 November 2020, Arkhangelsk). Materials. FITZ for the Integrated Study of the Arctic named after Academician N.P. Laverov of the RAS, 2020, pp. 15−20. (In Russ.).
  5. Love J.J., Chulliat A. An International Network of Magnetic Observatories. Eos, Transactions American Geophysical Union, 2013, 94, 373−374. https://doi.org/10.1002/2013EO420001
  6. Соловьёв А.А., Сидоров Р.В., Краснопёров Р.И. и др. Новая геомагнитная обсерватория “Климовская” // Геомагнетизм и аэрономия. 2016. Т. 56. № 3. С. 365–379. / Soloviev А.А., Sidorov R.V., Krasnoperov R.I. et al. “Klimovskaya”: A New Geomagnetic Observatory // Geomagnetism and Aeronomy. 2016, vol. 56, no. 3, pp. 342–354. https://doi.org/10.1134/S0016793216030154
  7. Воробьёв А.В., Соловьёв А.А., Пилипенко В.А., Воробьёва Г.Р. Интерактивная компьютерная модель для прогноза и анализа полярных сияний // Солнечно-земная физика. 2022. Т. 8. № 2. С. 93–100. doi: 10.12737/szf-82202213 / Vorobev A.V., Soloviev A.A., Pilipenko V.A., Vorobeva G.R. Interactive computer model for aurora forecast and analysis // Solar-Terrestrial Physics. 2022, vol. 8, iss. 2, pp. 84–90. doi: 10.12737/stp-82202213

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Cluster drilling under dense grid conditions (horizontal projection): ellipses of spatial uncertainty of existing wells are shown in black, those planned for drilling are shown in light gray

Download (292KB)
3. Fig. 2. Accuracy characteristics of quasi-static models of the magnetic field on the Earth’s surface: magnetic declination (degrees) of the main magnetic field in January 2016 (resolution ~800 km) (a), magnetic declination of the total magnetic field, including the main and lithospheric fields (resolution ~10 km) (b), magnetic declination anomaly of the magnetic field caused by lithospheric sources (resolution ~10 km) (c), local measurements of the anomalous component of the total magnetic field intensity (resolution ~10–100 m) (d)

Download (414KB)
4. Fig. 3. Modern magnetic observatory (using the example of the Klimovskaya observatory, Arkhangelsk region): non-magnetic pavilions and measuring equipment Source: [6]

Download (358KB)
5. Fig. 4. Modeling the position of the auroral oval on a virtual globe with a map of the Russian Federation railways Source: http://aurora-forecast.ru

Download (132KB)
6. Fig. 5. Experience of rendering services of the GC RAS ​​on geomagnetic support of directional drilling Note: the asterisks indicate the fields where the geomagnetic support technology is being implemented (GCF – gas condensate field, OGF – oil and gas field, OGCF – oil and gas condensate field)

Download (242KB)
7. Fig. SOLOVIOV Anatoly Alexandrovich

Download (49KB)

Copyright (c) 2024 Russian Academy of Sciences