Dynamic Component of Pressure during Metamorphism in a Thrust Zone

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In the southeastern fragment of the Raahe-Ladoga suture zone in Russia, within the Meyeri tectonic zone, increased pressures (“overpressure”) were revealed, caused by structural-metamorphic transformations of rocks during collisional interaction of allochthonous and autochthonous blocks. It is assumed that tectonic interaction of the rigid crustal block of the Archean basement of the Karelian craton (autochthon) and the Proterozoic granulite block of the Svecofennian belt (allochthon) controls the conditions for the formation of superlithostatic pressure anomalies. Methods of mineral geobarometry and numerical thermomechanical modeling in the rocks of the thrust zone recorded pressures up to 9–11 kbar, while lithostatic pressure not exceeding 4–6 kbar. The obtained results allow us to consider that the nature of the local superlithostatic pressure up to 7–9 kbar, established by mineral geobarometers and numerical thermomechanical modeling, can be explained by the tectonic interaction of blocks with heterogeneous physical and mechanical properties, and not reflect the error of the applied mineral geobarometry instruments.

Full Text

Restricted Access

About the authors

Sh. K. Baltybaev

Institute of Precambrian Geology and Geochronology, the Russian Academy of Sciences; St. Petersburg State University, Institute of the Earth Sciences

Author for correspondence.
Email: shauket@mail.ru
Russian Federation, St. Petersburg; St. Petersburg

E. S. Vivdich

Institute of Precambrian Geology and Geochronology, the Russian Academy of Sciences; St. Petersburg State University, Institute of the Earth Sciences

Email: shauket@mail.ru
Russian Federation, St. Petersburg; St. Petersburg

O. P. Polyansky

V. S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: shauket@mail.ru
Russian Federation, Novosibirsk

V. G. Sverdlova

V. S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: shauket@mail.ru
Russian Federation, Novosibirsk

References

  1. Азимов П.Я., Ризвановa Н.Г. Проявление позднесвекофеннского метаморфизма повышенных давлений в зональном метаморфическом комплексе Северного Приладожья (Юго-Восток Фенноскандинавского щита) // Петрология. 2021. Т. 29. № 3. С. 292–308. https://doi.org/10.31857/S0869590321020023
  2. Балтыбаев Ш.К., Вивдич Э.С. Эволюция Мейерской надвиговой зоны Северного Приладожья (Республика Карелия, Северо-Запад России): P–T условия формирования минеральных парагенезисов и геодинамические реконструкции // Геотектоника. 2021. Т. 225. № 4. С. 73–87. https://doi.org/10.31857/S0016853X21040032
  3. Балтыбаев Ш.К., Глебовицкий В.А., Козырева И.В. и др. Мейерский надвиг – главный элемент строения сутуры на границе Карельского кратона и Свекофеннского пояса в Приладожье, Балтийский щит // Докл. АН. 1996. Т. 348. № 3. С. 353-356.
  4. Балтыбаев Ш.К., Глебовицкий В.А., Козырева И.В. и др. Геология и петрология свекофеннид Приладожья. СПб.: Изд. СПбГУ, 2000. 199 с.
  5. Балтыбаев Ш.К., Левченков О.А., Бережная Н.Г. и др. Время и длительность свекофеннской плутоно-метаморфической активности на юго-востоке Балтийского щита (Приладожье) // Петрология. 2004. Т. 12. № 4. С. 374–393.
  6. Балтыбаев Ш.К., Левченков О.А., Левский Л.К. Свекофеннский пояс Фенноскандии: пространственно-временная корреляция раннепротерозойских эндогенных процессов. СПб.: Наука, 2009. 328 с.
  7. Балтыбаев Ш.К., Вивдич Э.С., Галанкина О.Л., Борисова Е.Б. Флюидный режим формирования гнейсов в Мейерской надвиговой зоне Северного Приладожья (Юго-Восток Фенноскандинавского щита) // Петрология. 2022. Т. 30. № 2. С. 166–193. https://doi.org/10.31857/S0869590322020029
  8. Балтыбаев Ш.К., Саватенков В.М., Петракова М.Е. T–t эволюция раннепротерозойских пород Северного Приладожья по данным изучения U-Pb, Rb-Sr и Sm-Nd систем в минералах // Геодинамика и тектонофизика. 2024. Т. 15. № 3. 0759. https://doi.org/10.5800/GT-2024-15-3-0759
  9. Вивдич Э.С., Балтыбаев Ш.К., Галанкина О.Л. Метаморфические минеральные реакции и парагенезисы в породах Мейерской тектонической зоны (Юго-Восток Фенноскандинавского щита) // Петрология. 2024. Т. 32. № 2. C. 195–217. https://doi.org/10.31857/s0869590324020046
  10. Гульбин Ю.Л. P–T тренды и моделирование эволюции минерального состава метапелитов Северного Приладожья в системе MnNCKFMASH // Записки РМО. 2014. Т. 143. № 6. С. 34–53.
  11. Коробейников С.Н. Нелинейное деформирование твердых тел. Новосибирск: Наука СО РАН, 2000. 262 с.
  12. Кулаковский А.Л., Морозов Ю.А., Смульская А.И. Стресс–метаморфизм и стресс–метаморфиты в докембрии Приладожья // Тр. КарНЦ РАН. 2015. № 7. С. 19–35. https://doi.org/10.17076/geo159
  13. Полянский О.П., Бабичев А.В., Коробейников С.Н., Ревердатто В.В. Компьютерное моделирование гранитогнейсового диапиризма в земной коре: контролирующие факторы, длительность и температурный режим // Петрология. 2010. № 4. С. 450–466.
  14. Полянский О.П., Лиханов И.И., Бабичев А.В. и др. Тектониты Приенисейской сдвиговой зоны (Енисейский кряж): свидетельства и термомеханическая численная модель генерации сверхлитостатического давления // Петрология. 2024. Т. 32. № 1. С. 19–45. https://doi.org/10.31857/S0869590324010036
  15. Татаурова А.А., Стефанов Ю.П., Деев Е.В. Механизмы формирования тектонических структур в зонах сочленения горных хребтов и прилегающих впадин: геомеханическое численное моделирование// Геология и геофизика. 2024. https://doi.org/10.15372/GIG2024187
  16. Babeyko A., Sobolev S., Trumbull R. et al. Numerical models of crustal scale convection and partial melting beneath the Altiplano-Puna plateau // Earth and Planetary Science Letters. 2002. V. 199. P. 373–388. https://doi.org/10.1016/S0012-821X(02)00597-6
  17. Baltybaev S.K. Svecofennian orogen of the Fennoscandian shield: Compositional and isotopic zoning and its tectonic interpretation // Geotectonics. 2013. V. 47. No 5. P. 452–464. https://doi.org/10.1134/S0016852113060022
  18. Beaumont C., Kamp J.J., Hamilton J., Fullsack P. The continental collision zone, South Island, New Zealand: Comparison of geodynamical models and observation // Journal of Geophysical Research. 1996. V. 101 (B2). P. 3333–3359. https://doi.org/10.1029/95JB02401
  19. Berman R.G. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2 // Journal of Petrology. 1988. V. 29. No 2. P. 445–522. https://doi.org/10.1093/petrology/29.2.445
  20. Berman R.G. Thermobarometry using multi-equilibrium calculations: A new technique with petrologic applications // Canadian Mineralogist. 1991. V. 29. No 4. P. 833–855.
  21. Berman R.G. WinTWQ (version 2.3): A software package for performing internally-consistent thermobarometric calculations // Geological Survey of Canada. 2007. Open File 5462 (revised). URL: https://doi.org/10.4095/223228
  22. Berman R.G., Aranovich L.Y. Optimized standard state and solution properties of minerals I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-A12O3-TiO2-SiO2 // Contribution to Mineralogy and Petrology. 1996. V. 126. P. 1–24. https://doi.org/10.1007/s004100050232
  23. Berman R.G., Aranovich L.Ya., Rancourt D.G., Mercier D.G. Reversed phase equilibrium constraints on the stability of Mg-Fe-Al biotite // American Mineralogist. 2007. V. 92. No 1. P. 139–150. https://doi.org/ 10.2138/am.2007.2051
  24. Bos B., Spiers C.J. Frictional-viscous flow of phyllosilicate-bearing fault rock: Microphysical model and implications for crustal strength profiles // Journal of Geophysical Research. 2002. V. 107 (B2). https://doi.org/ 10.1029/2001JB000301
  25. Buiter S.J.H., Babeyko A.Yu., Ellis S. et al. The numerical sandbox: сomparison of model results for a shortening and an extension experiment // Eds. S.J.H. Buiter, G. Schreurs. Analogue and Numerical Modelling of Crustal-Scale Processes. Geological Society, London, Special Publications. 2006. V. 253. P. 29–64.
  26. Chu X., Ague J.J., Podladchikov Y.Y., Tian M. Ultrafast eclogite formation via melting-induced overpressure // Earth and Planetary Science Letters. 2017. V. 479. P. 1–17. https://doi.org/10.1016/j.epsl.2017.09.007
  27. Connolly J.A. Multivariable phase–diagrams – an algorithm based on generalized thermodynamics // American Journal of Science. 1990. V. 290. P. 666–718. https://doi.org/10.2475/ajs.290.6.666
  28. Dale J., Holland T., Powell R. Hornblende-garnet-plagioclase thermobarometry: A natural assemblage calibration of the thermodynamics of hornblende // Contribution to Mineralogy and Petrology. 2000. V. 140. P. 353–362. https://doi.org/10.1007/s004100000187
  29. England P.C., Thompson A.B. Pressure-temperature-time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust // Journal of Petrology. 1984. V. 25. P. 894–928. https://doi.org/10.1093/petrology/25.4.894
  30. Fullsack P. An arbitrary lagrangian-eulerian formulation for creeping flows and its applications in tectonic models // Geophysical Journal International. 1995. V. 120. P. 1–23.
  31. Gaal G., Gorbatschev R. An outline of the Precambrian evolution of the Baltic Shield // Precambrian Research. 1987. V. 35. No 1. P. 15–25. https://doi.org/10.1016/0301-9268(87)90044-1
  32. Gerya T. Tectonic overpressure and underpressure in lithospheric tectonics and metamorphism // Journal of Metamorphic Geology. 2015. V. 33. P. 785–800. https://doi.org/10.1111/jmg.12144
  33. Gerya T.V., Yuen D.A. Rayleigh–Taylor instabilities from hydration and melting propel “cold plumesˮ at subduction zones // Earth and Planetary Science Letters. 2003. V. 212. No 1–2. P. 47–62. https://doi.org/10.1016/S0012-821X(03)00265-6
  34. Green E.C.R., White R.W., Diener J.F.A. et al. Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks // Journal of Metamorphic Geology. 2016. V. 34. P. 845–869. https://doi.org/ 10.1111/jmg.12211
  35. Hawthorne F.C., Oberti R., Harlow G.E. et al. Nomenclature of the amphibole supergroup // American Mineralogist. 2012. V. 97. No 11–12. P. 2031–2048. https://doi.org/10.2138/am.2012.4276
  36. Holland T.J.B. Powel R. An internally-consistent thermodynamic dataset for phases of petrological interest // Journal of Metamorphic Geology. 1998. V. 16. P. 309–344. https://doi.org/10.1111/j.1525-1314.1998.00140.x
  37. Holland T.J.B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids // Journal of Metamorphic Geology. 2011. V. 29. P. 333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x
  38. Jamtveit B., Moulas E., Andersen T.B. et al. High pressure metamorphism caused by fluid induced weakening of deep continental crust // Scientific Reports. 2018. V. 8. https://doi.org/10.1038/s41598-018-35200-1
  39. Kaus B.J.P. Modelling approaches to geodynamic processes. PhD thesis, Los Angeles: University of California, 2005. ETH Zurich.
  40. Korobeynikov S.N., Reverdatto V.V., Polyanskii O.P. et al. Computer simulation of underthrusting and subduction due to collision of slabs // Numerical Analysis and Applications. 2009. V. 2. No 1. P. 58–73. https://doi.org/10.1134/S1995423909010066
  41. Korsman K., Korja T., Pajunen M. et al. and GGT/SVEKA Working Group. The GGT/SVEKA Transect: Structure and Evolution of the Continental Crust in the Paleoproterozoic Svecofennian Orogen in Finland // International Geology Review. 1999. V. 41. P. 287–333.
  42. Kremenetsky A.A., Milanovsky S.Y., Ovchinnikov L.N. A heat generation model for the continental crust based on deep drilling in the Baltic Shield // Tectonophysics. 1989. V. 159. P. 231–246.
  43. Kronenberg A.K., Tullis J. Flow strengths of quartz aggregates: grain size and pressure effects due to hydrolytic weakening // Journal of Geophysical Research: Solid Earth. 1984. V. 89 (B6). P. 4281–4297. https://doi.org/10.1029/JB089iB06p04281
  44. Kukkonen I.T., Peltonen P. Xenolith-controlled geotherm for the central Fennoscandian Shield: Implications for lithosphere–asthenosphere relations // Tectonophysics. 1999. V. 304. P. 301–315.
  45. Lahtinen R., Huhma H., Kousa J. Contrasting source components of the Paleoproterozoic Svecofennian metasediments: detrital zircon U-Pb, Sm-Nd and geochemical data // Precambrian Research. 2002. V. 116. P. 81–109.
  46. Leak B.E., Woolley A.R., Arps C.E.S. et al. Nomenclature of Amphiboles: Report of the sub-committee on amphiboles of the international mineralogical association. Commission on new minerals and mineral names // American Mineralogist. 1997. V. 82. P. 1019–1037. https://doi.org/10.1180/minmag.1997.061.405.13
  47. Leloup P., Ricard Y., Battaglia J., Lacassin R. Shear heating in continental strike-slip shear zones: Model and field examples // Geophysical Journal International. 1999. V. 136. No 1. P. 19–40. https://doi.org/10.1046/j.1365-246X.1999.00683.x
  48. Li Z., Gerya T.V., Burg J.P. Influence of tectonic overpressure on P–T paths of HP-UHP rocks in continental collision zones: Thermomechanical modelling // Journal of Metamorphic Geology. 2010. V. 28. P. 227–247. https://doi.org/10.1111/j.1525-1314.2009.00864.x
  49. Mancktelow N.S. Tectonic overpressure in competent mafic layers and the development of isolated eclogites // Journal of Metamorphic Geology. 1993. V. 11. P. 801–812. https://doi.org/10.1111/j.1525-1314.1993.tb00190.x
  50. Mancktelow N.S. Nonlithostatic pressure during sediment subduction and the development and exhumation of high-pressure metamorphic rocks // Journal of Geophysical Research. 1995. V. 100. P. 571–583. https://doi.org/10.1029/94JB02158
  51. Mancktelow N.S. Tectonic pressure: Theoretical concepts and modelled examples // Lithos. 2008. V. 103. P. 149–177. https://doi.org/10.1016/j.lithos.2007.09.013
  52. MARC Users Guide. Vol. A: Theory and Users Information. Santa Ana (CA): MSC. Software Corporation. 2010.
  53. Marques F.O., Ranalli G., Mandal N. Tectonic overpressure at shallow depth in the lithosphere: the effects of boundary conditions // Tectonophysics. 2018a. V. 746. https://doi.org/10.1016/j.tecto.2018.03.022
  54. Marques F.O., Mandal N., Ghosh S. et al. Channel flow, tectonic overpressure, and exhumation of high-pressure rocks in the Greater Himalayas // Solid Earth. 2018b. V. 9. P. 1061–1078. https://doi.org/10.5194/se-9-1061-2018
  55. Moulas E., Podladchikov Y.Y., Aranovich L.Y., Kostopoulos D. The problem of depth in geology: When pressure does not translate into depth // Petrology. 2013. V. 21. No 6. P. 577–587. https://doi.org/10.1134/S0869591113060052
  56. Nironen M. The Svecofennian Orogen: a tectonic model // Precambrian Research. 1997. V. 86. No 1–2. P. 21–44.
  57. Perchuk A.L., Safonov O.G., Smit C.A. et al. Precambrian ultra-hot orogenic factory: Making and reworking of continental crust // Tectonophysics. 2018. V. 746. P. 572–586. https://doi.org/10.1016/j.tecto.2016.11.041
  58. Petrini K., Podladchikov Y. Lithospheric pressure depth relationship in compressive regions of thickened crust // Journal of Metamorphic Geology. 2000. V. 18. P. 67–77. https://doi.org/10.1046/j.1525-1314.2000.00240.x
  59. Ranalli G. Rheology of the Earth. London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras: Chapman & Hall, 1995. 413 p.
  60. Reuber G., Kaus B., Schmalholz S., White R. Nonlithostatic pressure during subduction and collision and the formation of (ultra)high-pressure rocks // Geology. 2016. V. 44. G37595.1. https://doi.org/10.1130/G37595.1
  61. Reverdatto V.V., Likhanov I.I., Polyansky O.P. et al. Causes, geodynamic factors and models of metamorphism // The Nature and Models of Metamorphism. Switzerland: Springer Geology, 2019. P. 83–228. https://doi.org/10.1007/978-3-030-03029-2_3
  62. Rutland R.W.R. Tectonic overpressures, in Controls of Metamorphism. Eds. W.S. Pitcher, G.W. Flinn. Edinburgh: Oliver and Boyd, 1965. P. 119–139.
  63. Schmalholz S.M., Podladchikov Y.Y. Tectonic overpressure in weak crustal-scale shear zones and implications for the exhumation of high-pressure rocks // Geophysical Research Letters. 2013. V. 40. P. 1984–1988. https://doi.org/10.1002/grl.50417
  64. Schmalholz S.M., Medvedev S., Lechmann S.M., Podladchikov Y. Relationship between tectonic overpressure, deviatoric stress, driving force, isostasy and gravitational potential energy // Geophysical Journal International. 2014. V. 197. P. 680–696. https://doi.org/ 10.1093/gji/ggu040
  65. Schreurs G., Buiter S.J.H., Boutelier D. et al. Analogue benchmarks of shortening and extension experiments // Eds. S.J.H. Buiter, G. Schreurs. Analogue and Numerical Modelling of Crustal-Scale Processes. Geological Society, London, Special Publications. 2006. V. 253. P. 1–27.
  66. Selzer C., Buiter S.J.H., Pfiffner O.A. Numerical modelling of frontal and basal accretion at collisional margins // Tectonics. 2008. V. 27. TC3001. https://doi.org/10.1029/2007TC002169.
  67. Tajčmanová L., Vrijmoed J., Moulas E. Grain-scale pressure variations in metamorphic rocks: implications for the interpretation of petrographic observations // Lithos. 2015. V. 216–217. P. 338–351. https://doi.org/10.1016/j.lithos.2015.01.006
  68. Vrijmoed J.C., Podladchikov Y.Y., Andersen T.B., Hartz E.H. An alternative model for ultra-high pressure in the Svartberget Fe-Ti garnet-peridotite, Western Gneiss Region, Norway // European Journal of Mineralogy. 2009. V. 21. P. 1119–1133. https://doi.org/10.1127/0935-1221/2009/0021-1985
  69. White R., Powell R., Johnson T. The effect of Mn on mineral stability in metapelites revisited: New a-x relations for manganese-bearing minerals // Journal of Metamorphic Geology. 2014. V. 32 № 8. P. 261–286. https://doi.org/10.1111/jmg.12095
  70. Whitney D.L., Evans B.W. Abbreviations for rock-forming minerals // American Mineralogist. 2010. V. 95. P. 185–187. https://doi.org/10.2138/am.2010.3371
  71. Zhou Y., Rybacki E., Wirth R. et al. Creep of partially molten fine-grained gabbro under dryconditions // Journal of Geophysical Research. 2012. V. 117. B05204. https://doi.org/10.1029/2011JB008646

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic map of the study area showing the metamorphic zoning of the Northern Priladozhye. 1 - Archean rocks of the Karelian Craton; 2 - a protrusion of the Archean basement in the cores of the bordered gneiss domes (1 - Sortavala, 2 - Kiryavolakhtinsky, 3 - Kokkasselsky, 4 - Impilakhtinsky, 5 - Mursulsky, 6 - Pitkyaranta, 7 - Inivara, 8 - Khavussky); 3 - metavolcanics of the Sortavala series; 4-7 - Lower Proterozoic volcanogenic-sedimentary cover of the Ladoga series with metamorphic parageneses of biotite-chlorite (4), staurolite, andalusite (5) and sillimanite-muscovite (6) schists, sillimanite-orthoclase (7) gneisses; 8 – Early Proterozoic rocks of the ultrametamorphic and granitization zone: Priozersk zone (a) and Lakhdenpohja zone (b); 9 – rapakivi granites; 10 – enderbites and unexposed metabasites; 11 – main fault plane and conventional northern and southern boundaries of the Meyer tectonic zone; 12 – tectonic faults; 13 – boundaries between: rocks of different metamorphic zones (a) and rock series (b). Inset: position of Svecofennides in the structures of the region along the AB section line. 1 – Archean rocks of the Fennoscandian Shield (intracratonic Proterozoic structures are not shown to simplify the diagram), 2 – Svecofennides, 3 – Dalslanides, 4 – Caledonides, 5 – Riphean cover, 6 – Raahe-Ladoga suture zone, 7 – study area. The locations and numbers of the studied samples of metapelites (circles) and metabasites (squares) are indicated by symbols of different shapes.

Download (3MB)
3. Fig. 2. Photographs of thin sections of metamorphic rocks of the Meyer tectonic zone, taken at parallel (a, c, d, g) and crossed (b, d, e, h) nicols. Samples of metapelites (sample B-20-417 (a, b), sample B-20-466 (c, d)) and metabasites (sample 5284a (d, e), sample B-22-613 (g, h)) are presented.

Download (12MB)
4. Fig. 3. BSE images of garnet porphyroblasts from samples of metabasite B-22-526 (a) and metapelite B-20-466 (c) with the corresponding distribution profiles of the end-member contents in them (b, d).

Download (2MB)
5. Fig. 4. Compositions of Ca-amphiboles from samples of metabasites of the Meyer tectonic zone on the classification diagram according to (Hawthorne et al., 2012).

Download (616KB)
6. Fig. 5. P–T diagrams for samples of garnet-biotite gneisses of the Meyer tectonic zone. The numbers mark the reactions given in Supplementary 2, ESM_2. The diagrams show the sample numbers: B-20-448 (a), B-20-466 (b), the locations of which are indicated in Fig. 1.

Download (1MB)
7. Fig. 6. P–T diagrams for the paragenesis Grt + Amp + Bt + Pl + Qz from metabasite samples B-22-526 (a) and B-22-613 (b). The numbers mark the reactions given in Supplementary 2, ESM_2. The location of the samples is shown in Fig. 1.

Download (1MB)
8. Fig. 7. P–T parameters calculated in the THERMOCALC program for the paragenesis Grt + Amp + Bt + Pl + Qz from metabasite samples B-22-526 (a) and B-22-613 (b). The numbers indicate the reactions given in Supplementary 2, ESM_2. The location of the samples is shown in Fig. 1.

Download (1MB)
9. Fig. 8. BSE photograph of the metabasite sample B-22-613 (a) and an enlarged fragment (b) with contacting garnet and amphibole, for which the highest pressure is recorded according to the garnet-hornblende-plagioclase thermobarometer (Dale et al., 2000).

Download (1MB)
10. Fig. 9. Results of computer modeling of MTZ metapelites. The red line indicates the granite minimum for metapelites under the action of carbon dioxide-water fluid: at XCO2 = 0 (dashed line) and XCO2 = 0.3 (solid line).

Download (1MB)
11. Fig. 10. Results of computer modeling of the mineral composition of metapelite samples B-20-448 (a–c) and B-20-466 (d–e). (a, d) – stability fields of mineral parageneses calculated in the PERPLE_X program, highlighting the region of existence of mineral paragenesis in samples B-20-448 and B-20-466, respectively; (b, d) – detailing the region with the required paragenesis and isomodes (solid lines) reflecting the content (in vol. %) of garnet (red lines), biotite (brown lines), plagioclase (blue lines), quartz (light blue lines); (c, e) – diagrams with isopleths (dashed lines) corresponding to the content (in fractions of a unit) of almandine (red lines), pyrope (purple lines), grossular (green lines), anorthite (blue lines) and annite (brown lines). The “+” and “–” signs indicate the presence or absence of the mineral phase indicated by the arrow in the pseudo-section. The diagram excludes fields containing albite (Ab), paragonite (Pg), and does not show phases whose content does not exceed 1 vol.%. The following pseudo-sections are designated by numbers in circles: 1 – Bt + Pl + Kfs + M(melt) + Grt + Ky + Qz + Rt; 2 – Bt + Pl ± Kfs + M(melt) + Grt + Crd + Sil + Qz; 3 – Bt + Pl ± Kfs + M(melt) + Grt + Crd + Qz.

Download (4MB)
12. Fig. 11. Results of computer modeling of mineral compositions of metabasite samples 6066k (a–c) and B-20-450 (d–e). (a, d) – stability fields of mineral parageneses calculated in the PERPLE_X program, highlighting the region of existence of mineral paragenesis in samples 6066k and B-20-450, respectively; (b, d) – detailing of the region with the required paragenesis and isomodes (solid lines) reflecting the content (in vol. %) of clinopyroxene (gray lines), hornblende (orange lines), garnet (red lines), plagioclase (blue lines), biotite (brown lines); (c, e) – diagrams with isopleths (dashed lines) corresponding to the content (in fractions of a unit) of almandine (red lines), pyrope (purple lines), grossular (green lines), anorthite (blue lines) and annite (brown lines), diopside (gray lines) and Ca²⁺ (a.f.u.) in amphibole (orange lines). The “+” and “–” signs show the presence or absence of the mineral phase indicated by the arrow in the pseudo-section. The diagram excludes fields containing albite (Ab), paragonite (Pg), and phases whose content does not exceed 1 vol.% are not shown. The following pseudo-sections are designated by numbers: (a) 1 – Grt + Bt + Pl + Amp + Qz + Rt + Dol + Ank; 2 – Grt + Bt + Pl + Amp + Qz + Cal + Dol + Ank; 3 – Grt + Bt + Pl + Amp + Qz + Rt + Cal + Dol + Ank; 4 – Grt + Bt + Pl + Amp + Qz + Rt + Ilm + Dol + Ank; 5 – Grt + Bt + Pl + Amp + Qz + Cal + Dol; 6 – Grt + Bt + Pl + Amp + Qz + Ilm + Dol + Ank; 7 – Grt + Bt + Pl + Amp + Qz + Ilm + Cal + Dol ± Ank; 8 – Grt + Bt + Pl + Amp + Qz + Rt + Cal + Dol. (d) 1 – Grt + Bt + Pl + Ms + Qz + Dol + Ank; 2 – Grt + Bt + Pl + Ms + Amp + + Qz + Sd + Ank; 3 – Grt + Bt + Pl + Ms + Chl + Qz + Sd + Ank; 4 – Grt + Bt + Pl + Amp + Qz + Sd + Ank; 5 – Grt + Bt + Pl + Amp + Chl + Qz + Sd + Ank.

Download (4MB)
13. Fig. 12. Pseudo-section diagrams for a given composition of metabasite sample B-22-613. (a, b) µAl₂O₃–µK₂O; (c, d) µFeO–µK₂O; (d, f) µCaO–µK₂O; (g, h) µMgO–µK₂O. (a, c, d, g) – diagrams with isomodes (solid lines) showing the content (in vol. %) of rock-forming minerals: amphibole (orange lines), garnet (red lines), plagioclase (blue lines), quartz (light blue lines); (b, d, f, h) – diagrams with isopleths (dashed lines) corresponding to the content (in fractions of units) of almandine (red lines), pyrope (purple lines), grossular (green lines) and Ca²⁺ (a.f.u.) in amphibole (orange lines). The signs “+” and “–” show the presence or absence of the mineral phase indicated by the arrow in the pseudo-section. The modeling was performed at fixed values of temperature, pressure and mole fraction of carbon dioxide in the fluid: T = 700°C, P = 7.3 kbar, XCO₂ = 0.3. Initial composition of the rock, in wt. %: SiO₂ 49.55, TiO₂ 1.04, Al₂O₃ 18.07, Fe₂O₃t 13.55, MnO 0.22, MgO 6.2, CaO 5.89, Na₂O < 0.1, K₂O 3.12, P₂O₅ 0.32. Pseudosections with suitable paragenesis are highlighted in gray.

Download (4MB)
14. Fig. 13. Graphical representation of the rheological law of dislocation creep for the materials used in the model: (a) – dependence of stress on the strain rate at a fixed temperature of 700°C; (b) – dependence of stress on temperature at a fixed strain rate of 1.e-15 (1/s). The line numbers correspond to the properties: 1 – PRL, wet quartzite (Kronenberg, Tullis, 1984), 2 – PRS, gabbro/amphibolite (Zhou et al., 2012), 3 – AR, dry granite (Ranalli, 1995), 4 – PRLh, anhydrous granulite (Leloup et al., 1999), 5 – mc, mafic crust (Perchuk et al., 2018).

Download (1MB)
15. Fig. 14. Model structure of the crust of the Meyer tectonic zone and the geometry of the computational domain along the AB section line (Fig. 1). PRL – Ladoga series; PRS, – Sortavala series; AR – Archean complex; PRLh – Lahdenpohja series; mc – mafic crust beneath the Svecofennides. V – allochthon movement velocity (Southern domain) at a fixed autochthon (Northern domain). Other boundary conditions are given in the text. The position of the metavolcanics of the Sortavala PRS series is shown for two model variants: dotted lines – for the R2.3-geom2 models, solid lines – for the others in Table 4.

Download (327KB)
16. Fig. 15. Schemes of experiments on deformation of a sheet-like structure in a box under compression (a) and under tension (b) with a moving right wall. The formulation of the problem and the properties of the material correspond to the laboratory and numerical experiments presented in (Buiter et al., 2006).

Download (412KB)
17. Fig. 16. Comparison of the results of an analog experiment on compression of a sand layer and the results of mathematical modeling. (a) – thrust formation patterns were obtained in the experiment (Schreurs et al., 2006); (b, c, d) – in mathematical modeling using the I2ELVIS (Gerya, Yuen, 2003), LAPEX-2D (Babeyko et al., 2002) and MSC.Marc (this work) packages. The thrust formation patterns are presented; the color from blue to red shows the rate of plastic deformations.

Download (1MB)
18. Fig. 17. Comparison of the results of analog experiments and mathematical modeling of tension. (a, b) – deformed configurations obtained in experiments (Schreurs et al., 2006); (c, d) – results of modeling using the I2ELVIS (Gerya, Yuen, 2003), LAPEX2D (Babeyko et al., 2002) packages; (d, e) – modeling of tension performed using the MSC.Marc package (this work) with the Drucker-Prager (d) and Huber-Mises (e) plasticity models. The intensity of plastic deformations is shown in shades from blue to red.

Download (2MB)
19. Fig. 18. Results of thermomechanical modeling (model R2-geom2, Table 4) of tectonic interaction of the allochthonous and autochthonous blocks of the Meyer tectonic zone at the time of 1.67 million years (the magnitude of horizontal compression of the crust is 11.5%). (a) – total pressure (the color shows an increase in pressure from red to blue, 1 GPa = 10 kbar); (b) – distribution of the shear component of stresses (MPa); (c) – intensity of plastic deformations; (d) – strain rate (1.e-13/s), the dotted line shows the position of the fault.

Download (1MB)
20. Fig. 19. The distribution pattern of pressure (a) and plastic deformations (b) in the model (R3-geom2m1m2-m4) with identical rheological properties of the upper crust blocks of the Southern and Northern domains (allochthon and autochthon) and different properties of the lower crust blocks. The patterns are shown for the moment of the end of the block convergence (the horizontal compression of the crust is 7%). The anomalous region of superlithostatic pressure in the upper crust is absent compared to the R2-geom2 model (Fig. 18). The pressure range at the block contact is indicated. The dotted line shows the position of the fault.

Download (3MB)
21. Fig. 20. Duration of existence of non-lithostatic pressure in the near-contact region in the center of the model (see insert). The undisturbed pressure at this depth is 4 kbar (points a, b, c) and 6 kbar (point g).

Download (733KB)

Copyright (c) 2025 Russian academy of sciences