Basalt melting in dry and wet systems: Thermodynamic Modeling, Parameterization, and Comparison with Experimental data

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Metabasite melting is a large-scale geological process that contributes to the formation of felsic volcanics and, to a greater extent, tonalite-trondhjemite-granodiorite (TTG) complexes, which make up a significant part of ancient continental crust. Based on the results of phase equilibrium modelling using the Perple_X software package, melting parameterisation was performed for three compositions: anhydrous mid-ocean ridge basalt (MORB), MORB-H2O (2.78 wt % H2O) and hydrated basalt (AOC, altered oceanic crust, 2.78 wt % H2O) for temperatures of 500–1600°С and pressures of 0.0001–3 GPa. The obtained expressions are in good agreement with the few experimental data and show that for hydrous compositions (MORB-H2O and AOC) there is a sharp increase in melt volume (up to 20 vol %) in the first 20–30°C after passing the water solidus temperature, the subsequent increase in temperature leads to a more restrained increase in the degree of melting. Modelling has shown that near-solidus melts in hydrous systems have rhyolitic and trachydacite compositions. A further increase in the degree of melting leads to a decrease in SiO₂ and alkaline elements and an increase in CaO, MgO and FeO. The change in volume and composition of the melt is considered in the context of peritectic reactions, as well as changes in H2O content. Application of the melting parameterisation to metabasalts from subducting slabs in the Cascadia and Central Aleutian subduction hot zones has revealed different degrees of melting of these rocks along the corresponding geotherms; the products of such melting are adakite magmas. The proposed parameterisation of rock melting can be used to analyse the mechanisms of felsic rock formation in different geodynamic settings and can be integrated into existing petrological and petrological-thermomechanical models.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Sapegina

Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences; M.V. Lomonosov Moscow State University, Department of Geology

Хат алмасуға жауапты Автор.
Email: ann.sapegina@gmail.com
Ресей, Chernogolovka, Moscow Region; Moscow

A. Perchuk

M.V. Lomonosov Moscow State University, Department of Geology; Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences

Email: ann.sapegina@gmail.com
Ресей, Moscow; Chernogolovka, Moscow Region

Әдебиет тізімі

  1. Bach W., Peucker‐Ehrenbrink B., Hart S.R., Blusztajn J.S. Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B – Implications for seawater‐crust exchange budgets and Sr‐ and Pb‐isotopic evolution of the mantle // Geochem. Geophys. Geosyst. 2003. V. 4. № 3. P. 2002GC000419. https://doi.org/10.1029/2002GC000419
  2. Blatter D.L., Sisson T.W., Hankins W.B. Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: Implications for andesite genesis // Contrib. Mineral. Petrol. 2013. V. 166. № 3. P. 861–886. https://doi.org/10.1007/s00410-013-0920-3
  3. Carter L.B., Skora S., Blundy J.D. et al. An experimental study of trace element fluxes from subducted oceanic crust // J. Petrol. 2015. V. 56. № 8. P. 1585–1606. https://doi.org/10.1093/petrology/egv046
  4. Castillo P.R. Adakite petrogenesis // Lithos. 2012. V. 134–135. P. 304–316. https://doi.org/10.1016/j.lithos.2011.09.013
  5. Clemens J.D., Yearron L.M., Stevens G. Barberton (South Africa) TTG magmas: Geochemical and experimental constraints on source-rock petrology, pressure of formation and tectonic setting // Precambr. Res. 2006. V. 151. № 1–2. P. 53–78. https://doi.org/10.1016/j.precamres.2006.08.001
  6. Connolly J.A.D. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation // Earth Planet. Sci. Lett. 2005. V. 236. № 1. P. 524–541. https://doi.org/10.1016/j.epsl.2005.04.033
  7. Dale J., Holland T., Powell R. Hornblende–garnet–plagioclase thermobarometry: A natural assemblage calibration of the thermodynamics of hornblende // Contrib. Mineral. Petrol. 2000. V. 140. № 3. P. 353–362. https://doi.org/10.1007/s004100000187
  8. Feig S.T., Koepke J., Snow J.E. Effect of water on tholeiitic basalt phase equilibria: An experimental study under oxidizing conditions // Contrib. Mineral. Petrol. 2006. Т. 152. № 5. С. 611–638. https://doi.org/10.1007/s00410-006-0123-2
  9. Gale A., Dalton C.A., Langmuir C.H. et al. The mean composition of ocean ridge basalts: MEAN MORB // Geochem. Geophys. Geosyst. 2013. V. 14. № 3. P. 489–518. https://doi.org/10.1029/2012GC004334
  10. Grove T.L., Kinzler R.J., Bryan W.B. Fractionation of mid-ocean ridge basalt (MORB) // Eds. J.P. Morgan, D.K. Blackman, J.M. Sinton. Geophysical Monograph Series. Washington, D.C.: American Geophysical Union, 1992. P. 281–310. https://doi.org/10.1029/GM071p0281
  11. Hernández-Uribe D., Hernández-Montenegro J.D., Cone K.A., Palin R.M. Oceanic slab-top melting during subduction: Implications for trace-element recycling and adakite petrogenesis // Geology. 2020. V. 48. № 3. P. 216–220. https://doi.org/10.1130/G46835.1
  12. Hernández-Uribe D., Palin R.M., Cone K.A., Cao W. Petrological implications of seafloor hydrothermal alteration of subducted mid-ocean ridge basalt // J. Petrol. 2021. V. 61. № 9. egaa086. https://doi.org/10.1093/petrology/egaa086
  13. Hernández-Montenegro J.D., Palin R.M., Zuluaga C.A., Hernández-Uribe D. Archean continental crust formed by magma hybridization and voluminous partial melting // Sci. Rep. 2021. V. 11. № 1. P. 5263. https://doi.org/10.1038/s41598-021-84300-y
  14. Holland T., Powell R. Activity-composition relations for phases in petrological calculations: An asymmetric multicomponent formulation // Contrib. Mineral. Petrol. 2003. V. 145. № 4. P. 492–501.
  15. Holland T.J.B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids // J. Metamorph. Geol. 2011. V. 29. № 3. P. 333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x
  16. Holland T.J.B., Green E.C. R., Powell R. Melting of peridotites through to granites: a simple thermodynamic model in the system KNCFMASHTOCr // J. Petrol. 2018. V. 59. № 5. P. 881–900. https://doi.org/10.1093/petrology/egy048
  17. Holloway J.R., Burnham C.W. Melting relations of basalt with equilibrium water pressure less than total pressure // J. Petrol. 1972. V. 13. № 1. P. 1–29. https://doi.org/10.1093/petrology/13.1.1
  18. Johnson K.T.M., Kushiro I. Segregation of high-pressure partial melts from peridotite using aggregates of diamond: A new experimental approach // Geophys. Res. Lett. 1992. Т. 19. № 16. С. 1703–1706.
  19. Katz R.F., Spiegelman M., Langmuir C.H. A new parameterization of hydrous mantle melting // Geochem. Geophys. Geosyst. 2003. V. 4. № 9. P. 2002GC000433. https://doi.org/10.1029/2002GC000433
  20. Kelley K.A., Plank T., Ludden J., Staudigel H. Composition of altered oceanic crust at ODP sites 801 and 1149 // Geochem. Geophys. Geosyst. 2003. V. 4. № 6. P. 2002GC000435. https://doi.org/10.1029/2002GC000435
  21. Kendrick J., Yakymchuk C. Garnet fractionation, progressive melt loss and bulk composition variations in anatectic metabasites: Complications for interpreting the geodynamic significance of TTGs // Geosci. Frontiers. 2020. V. 11. № 3. P. 745–763. https://doi.org/10.1016/j.gsf.2019.12.001
  22. Kessel R., Ulmer P., Pettke T. et al. The water–basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400°C // Earth Planet. Sci. Lett. 2005. V. 237. № 3–4. P. 873–892. https://doi.org/10.1016/j.epsl.2005.06.018
  23. Koepke J., Feig S. T., Snow J., Freise M. Petrogenesis of oceanic plagiogranites by partial melting of gabbros: An experimental study // Contrib. Mineral. Petrol. 2004. V. 146. № 4. P. 414–432. https://doi.org/10.1007/s00410-003-0511-9
  24. Lambert I.B., Wyllie P.J. Melting of gabbro (quartz eclogite) with excess water to 35 kilobars, with geological applications // J. Geol. 1972. V. 80. № 6. P. 693–708. https://doi.org/10.1086/627795
  25. Laporte D., Toplis M.J., Seyler M., Devidal J.-L. A new experimental technique for extracting liquids from peridotite at very low degrees of melting: Application to partial melting of depleted peridotite // Contrib. Mineral. Petrol. 2004. V. 146. № 4. P. 463–484. https://doi.org/10.1007/s00410-003-0509-3
  26. Le Maitre R.W., Streckeisen A., Zanettin B. et al. Igneous rocks: a classification and glossary of terms // Recommendation of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. Cambridge: Cambridge University Press, 2005. 2-ed. 236 p. https://doi.org/10.1017/CBO9780511535581
  27. Liou P., Guo J. Generation of archaean TTG gneisses through amphibole‐dominated fractionation // JGR Solid Earth. 2019. V. 124. № 4. P. 3605–3619. https://doi.org/10.1029/2018JB017024
  28. Litasov K.D., Foley S.F., Litasov Y.D. Magmatic modification and metasomatism of the subcontinental mantle beneath the Vitim volcanic field (East Siberia): Evidence from trace element data on pyroxenite and peridotite xenoliths from Miocene picrobasalt // Lithos. 2000. V. 54. № 1–2. P. 83–114. https://doi.org/10.1016/S0024-4937(00)00016-5
  29. Martin H. Adakitic magmas: Modern analogues of Archaean granitoids // Lithos. 1999. V. 46. № 3. P. 411–429. https://doi.org/10.1016/j.lithos.2004.04.048
  30. Martin L.A.J., Hermann J. Experimental phase relations in altered oceanic crust: Implications for carbon recycling at subduction zones // J. Petrol. 2018. V. 59. № 2. P. 299–320. https://doi.org/10.1093/petrology/egy031
  31. Moyen J.-F., Martin H. Forty years of TTG research // Lithos. 2012. V. 148. P. 312–336. https://doi.org/10.1016/j.lithos.2012.06.010
  32. Moyen J.-F., Stevens G. Experimental constraints on TTG petrogenesis: Implications for Archean geodynamics // Eds. K. Benn, J.-C. Mareschal, K.C. Condie. Geophysical Monograph Series. Washington, D.C.: American Geophysical Union, 2006. P. 149–175. https://doi.org/10.1029/164GM11
  33. Okamoto K., Maruyama S. The eclogite–garnetite transformation in the MORB + H2O system // Phys. Earth Planet. Int. 2004. V. 146. № 1–2. P. 283–296. https://doi.org/10.1016/j.pepi.2003.07.029
  34. Ono S. Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: Implications for water transport in subduction zones // J. Geophys. Res. 1998. V. 103. № B8. P. 18253–18267. https://doi.org/10.1029/98JB01351
  35. Palin R.M., White R.W., Green E.C.R. Partial melting of metabasic rocks and the generation of tonalitic-trondhjemitic-granodioritic (TTG) crust in the Archaean: Constraints from phase equilibrium modelling // Precambr. Res. 2016. Т. 287. P. 73–90. https://doi.org/10.1016/j.precamres.2016.11.001
  36. Pawley A.R., Holloway J.R. Water sources for subduction zone volcanism: New experimental constraints // Science. 1993. V. 260. № 5108. P. 664–667. https://doi.org/10.1126/science.260.5108.664
  37. Pertermann M. Anhydrous partial melting experiments on MORB-like eclogite: Phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa // J. Petrol. 2003. V. 44. № 12. P. 2173–2201. https://doi.org/10.1093/petrology/egg074
  38. Pertermann M., Hirschmann M.M. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate: Partial melting of MORB-like pyroxenite // J. Geophys. Res. 2003. V. 108. № B2. https://doi.org/10.1029/2000JB000118
  39. Polat A., Wang L., Appel P.W.U. A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models // Tectonophysics. 2015. V. 662. P. 67–94. https://doi.org/10.1016/j.tecto.2015.04.006
  40. Pourteau A., Doucet L.S., Blereau E.R. et al. TTG generation by fluid-fluxed crustal melting: Direct evidence from the Proterozoic Georgetown Inlier, NE Australia // Earth Planet. Sci. Lett. 2020. V. 550. P. 116548. https://doi.org/10.1016/j.epsl.2020.116548
  41. Qian Q., Hermann J. Partial melting of lower crust at 10–15 kbar: Constraints on adakite and TTG formation // Contrib. Mineral. Petrol. 2013. V. 165. № 6. P. 1195–1224. https://doi.org/10.1007/s00410-013-0854-9
  42. Rapp R.P., Watson E.B. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling // J. Petrol. 1995. V. 36. № 4. P. 891–931. https://doi.org/10.1093/petrology/36.4.891
  43. Rapp R.P., Watson E.B., Miller C.F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites // Precambr. Res. 1991. V. 51. № 1–4. P. 1–25. https://doi.org/10.1016/0301-9268(91)90092-O
  44. Rapp R.P., Shimizu N., Norman M.D. Growth of early continental crust by partial melting of eclogite // Nature. 2003. V. 425. № 6958. P. 605–609. https://doi.org/10.1038/nature02031
  45. Schmidt M.W., Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation // Earth Planet. Sci. Lett. 1998. V. 163. № 1–4. P. 361–379. https://doi.org/10.1016/S0012-821X(98)00142-3
  46. Sisson T.W., Kelemen P.B. Near-solidus melts of MORB + 4 wt% H2O at 0.8–2.8 GPa applied to issues of subduction magmatism and continent formation // Contrib. Mineral. Petrol. 2018. V. 173. № 9. P. 70. https://doi.org/10.1007/s00410-018-1494-x
  47. Spandler C., Hammerli J., Yaxley G.M. An experimental study of trace element distribution during partial melting of mantle heterogeneities // Chemic. Geol. 2017. V. 462. P. 74–87.
  48. Staudigel H. Chemical fluxes from hydrothermal alteration of the oceanic crust // Treatise on Geochemistry. USA: Elsevier, 2014. P. 583–606. https://doi.org/10.1016/B978-0-08-095975-7.00318-1
  49. Staudigel H., Davies G.R., Hart S.R. et al. Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites 417/418 // Earth Planet. Sci. Lett. 1995. V. 130. № 1–4. P. 169–185. https://doi.org/10.1016/0012-821X(94)00263-X
  50. Syracuse E.M., Van Keken P.E., Abers G.A. The global range of subduction zone thermal models // Phys. Earth Planet. Int. 2010. V. 183. № 1–2. P. 73–90. https://doi.org/10.1016/j.pepi.2010.02.004
  51. Takahashi E., Nakajima K. Melting process in the Hawaiian plume: An experimental study // Eds. E. Takahashi, P.W. Lipman, M.O. Garcia, J. Naka, S. Aramaki. Geophysical Monograph Series. Washington, D.C.: American Geophysical Union, 2002. P. 403–418. https://doi.org/10.1029/GM128p0403
  52. Takahahshi E., Nakajima K., Wright T.L. Origin of the Columbia River basalts: Melting model of a heterogeneous plume head // Earth Planet. Sci. Lett. 1998. V. 162. № 1–4. P. 63–80. https://doi.org/10.1016/S0012-821X(98)00157-5
  53. Walter M. J., Sisson T. W., Presnall D. C. A mass proportion method for calculating melting reactions and application to melting of model upper mantle lherzolite // Earth Planet. Sci. Lett. 1995. V. 135. № 1–4. P. 77–90.
  54. White R.W., Powell R., Holland T.J.B. Progress relating to calculation of partial melting equilibria for metapelites // J. Metamorph. Geol. 2007. V. 25. № 5. P. 511–527. https://doi.org/10.1111/j.1525-1314.2007.00711.x
  55. White R.W., Powell R., Johnson T.E. The effect of Mn on mineral stability in metapelites revisited: New a-x relations for manganese‐bearing minerals // J. Metamorph. Geol. 2014. V. 32. № 8. P. 809–828. https://doi.org/10.1111/jmg.12095
  56. Xiong X., Keppler H., Audetat A. et al. Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis // Amer. Mineral. 2009. V. 94. № 8–9. P. 1175–1186. https://doi.org/10.2138/am.2009.3158
  57. Zang C., Tang H., Wang M. Effects of sediment addition on magma generation from oceanic crust in a post-collisional extensional setting: Constraints from partial melting experiments on mudstone–amphibolite/basalt at 1.0 and 1.5 GPa // J. Asian Earth Sci. 2020. V. 188. 104111.
  58. Zhang C., Holtz F., Koepke J. et al. Constraints from experimental melting of amphibolite on the depth of formation of garnet-rich restites, and implications for models of Early Archean crustal growth // Precambr. Res. 2013. V. 231. P. 206–217. https://doi.org/10.1016/j.precamres.2013.03.004
  59. Zhang H.L., Cottrell E., Solheid P.A. et al. Determination of Fe3+/ΣFe of XANES basaltic glass standards by Mössbauer spectroscopy and its application to the oxidation state of iron in MORB // Chemic. Geol. 2018. Т. 479. С. 166–175.
  60. Zhang Y., Wang C., Li W. et al. Carbon Dioxide Released From Subducted Oceanic Crust by Hydrous Carbonatitic Liquids // Geophys. Res. Lett. 2023. V. 50. № 18. e2023GL104734.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Calculated phase diagram for the average N-MORB composition (Gale et al., 2013). Blue line – solidus, red – liquidus. Colored lines highlight the stability limits of minerals. Polygons and circles separated by sectors represent mineral parageneses and P–T conditions of the experiments. The starting compositions of the experiments are given in Table 1.

Жүктеу (2MB)
3. Fig. 2. Calculated phase diagrams for: (a) the average composition of N-MORB with 2.78 wt.% H₂O (Gale et al., 2013) and (b) the composition of altered basalt (AOC) (Staudigel et al., 1995). Blue lines are solidi, red lines are liquidi. Colored lines highlight the limits of mineral stability. Polygons and circles separated by sectors represent mineral parageneses and P–T conditions of the experiments. The compositions of the starting compositions of the experiments are given in Table 1. The crimson line shows the stability limit of epidote, green – amphibole, purple – phengite.

Жүктеу (2MB)
4. Fig. 3. Graphical representation of melting parameterization for the MORB composition (without water) for isobaric conditions. (a) – dependence of the degree of melting F on Tʹ. Circles – Perple_X data, lines – parameterization (Table 2); (b) – calculated curves F(T) at different pressures. Table 2 shows the parameterized equations of the lines, where the sections of the curves before and after the breaks are numbered with Roman numerals: FI, FII, FIII.

Жүктеу (1MB)
5. Fig. 4. Graphical representation of melting parameterization for the MORB-H2O composition for isobaric conditions. (a) – dependence of F on Tʹ. Circles – Perple_X data, lines – parameterization (Table 3); (b) – calculated F(T) curves for different pressures. Table 3 shows the parameterized equations of the lines, where the sections of the curves before and after the breaks are numbered with Roman numerals: FI, FII.

Жүктеу (1MB)
6. Fig. 5. Graphical representation of melting parameterization for the AOC composition for isobaric conditions. (a) – dependence of F on Tʹ. Circles – Perple_X data, lines – parameterization (Table 4); (b) calculated F(T) curves for different pressures. Table 4 shows the parameterized equations of the lines, where the sections of the curves before and after the breaks are numbered with Roman numerals: FI, FII, FIII.

Жүктеу (1MB)
7. Fig. 6. Degree of melting (F, wt.%), Perple_X data obtained in experiments for (a) MORB (without water) and (b) MORB-H2O. Solid lines of different colors show the F(T) dependence obtained by parameterizing the melting of both compositions at different pressures. The errors in calculating the degree of melting in the experiments are: 1.0–1.5 wt. % (PH03), 0.01–0.8 wt. % (G92), 0.02–0.13 wt. % (B13); in other works, the errors are not given. Accepted abbreviations for experimental works: TN02 (Takahashi, Nakajima, 2002), PH03 (Pertermann, Hirschmann, 2003), G92 (Grove et al., 1992), B13 (Blatter et al., 2013), SK18 (Sisson, Kelemen, 2018).

Жүктеу (1MB)
8. Fig. 7. Calculated trajectories of the evolution of melt compositions, melted from MORB-H₂O and AOC on the TAS diagram (Le Maitre et al., 2005). Near-liquidus melts are in the basalt field. Solid lines show the melt composition for MORB, dashed lines – for AOC. Data for different pressures are marked in color: 0.5 GPa (green), 1.5 GPa (orange), 2.5 GPa (blue).

Жүктеу (1MB)
9. Fig. 8. Changes in the composition of melts resulting from partial melting with an increase in temperature and degree of melting from solidus to liquidus at 0.5, 1.5 and 2.5 GPa in the MORB-H₂O system.

Жүктеу (1MB)
10. Fig. 9. Modal phase contents between solidus and liquidus for MORB-H₂O (a, c, d) and AOC (b, d, e) at 0.5, 1.5 and 2.5 GPa.

Жүктеу (3MB)
11. Fig. 10. Change in the composition of melts resulting from partial melting with an increase in temperature and degree of melting from solidus to liquidus at 0.5, 1.5 and 2.5 GPa for AOC basalt.

Жүктеу (1MB)
12. Fig. 11. Dependence of the degree of melting (F) on temperature for MORB-H₂O, data from Perple_X, at different water contents in the system: 1, 2.78, 5 and 10 wt. % and at different pressure values: (a) 0.5, (b) 1.5 and (c) 2.5 GPa.

Жүктеу (945KB)
13. Fig. 12. Estimates of the degree of melting of hydrated basalt (AOC) obtained using our parameterization. The dashed black lines represent the P–T geotherms of the slab surface in the subduction zone beneath the Cascade Range and Adak Island (Western Aleutians) (Syracuse et al., 2010).

Жүктеу (764KB)

© Russian academy of sciences, 2025