Volatile Contents during the Formation of Olivinite and Olivine-Monticellite Rocks of the Krestovskaya Alkaline-Ultrabasic Carbonatite Intrusion, Polar Siberia: Pyrolysis-Free Gas Chromatography-Mass Spectrometry Data

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The parental larnite-normative alkaline ultramafic melt consistently forming olivinite and olivine-monticellite rocks of the Krestovskaya alkaline-ultrabasic carbonatite intrusion is enriched with hydrocarbons (HC) and their derivatives, nitrogenated, chlorinated, fluorinated, sulfonated compounds, as well as H2O and CO2 according to pyrolysis-free gas chromatography-mass spectrometry data (GC-MS). The aliphatic, cyclic, oxygenated compounds, and very few heterocyclic compounds are determined among the hydrocarbons. During the crystallization of olivine in olivinites, fluids are enriched in hydrocarbons (59.30 rel. %), excluding nitrogenated, chlorinated, and sulfonated derivatives and including predominant amount of oxygenated compounds (52.17 rel. %) and subordinate amount of aliphatic and cyclic compounds (6.70 rel. %). During the crystallization of perovskite in olivine-monticellite rocks, the amount of oxygenated hydrocarbons slightly decreases (34.77 rel. %) and aliphatic and cyclic compounds increases up to 10.55 rel. %. The crystallization of monticellite is accompanied by the predominance of aliphatic and cyclic hydrocarbons (59.67 rel.%) and subordinate amounts of oxygenated hydrocarbons (29.35 rel. %). The fact that the calculated H/(O + H) ratio is 0.78 and 0.77 for fluids in olivine and perovskite, respectively indicates the reducing conditions of crystallization of these minerals. On the stage of olivine crystallization of olivinite, the fluids also contain 4.1 rel. % of nitrogenated, 4.58 rel. % of sulfonated, 0.19 rel. % chlorinated, 0.12 rel. % fluorinated hydrocarbons, 0.49 rel. % CO2, and 31.17 rel. % H2O. The crystallization of perovskite in olivine-monticellite rocks is accompanied by further accumulation of nitrogenated compounds up to 8.95 rel. %, sulfonated (9.53 rel. %) and chlorinated (11.33 rel. %) hydrocarbons, and 16.48 rel. % CO2. In this stage the content of H2O in the fluids decreases to 7.66 rel. % due to its binding to cations and Al-Si-radicals of the melt into hydroxyl-bearing compounds. At the final stage of crystallization of perovskite and initial monticellite, when fluids are saturated by critical amounts of chlorinated, nitrogenated and sulfonated compounds and CO2, they become to dissolve in the melt and react with it: most of the considered fluids, together with Ca and alkalis of the melt, form carbonate-salt compounds and the melt became silicate-salt composition. According to GC-MS analysis data, residual fluid phase of monticellite-hosted inclusions are characterized by only 2.29 rel. % nitrogenated and 1.11 rel. % sulfonated, 0.32 rel. % chlorinated, and 0.35 rel. % fluorinated hydrocarbons, 0.04 rel. % CO2 and 6.15 rel. % H2O with an increase in hydrocarbons up to 89.63 rel. %. During the crystallization of monticellite, silicate-salt immiscibility occurred, followed by spatial separation of the silicate and salt fractions.

Толық мәтін

Рұқсат жабық

Авторлар туралы

L. Panina

Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: panina@igm.nsc.ru
Ресей, Novosibirsk

E. Rokosova

Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences

Email: rokosovae@igm.nsc.ru
Ресей, Novosibirsk

A. Isakova

Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences; Novosibirsk State University

Email: atnikolaeva@igm.nsc.ru
Ресей, Novosibirsk; Novosibirsk

A. Tomilenko

Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences

Email: panina@igm.nsc.ru
Ресей, Novosibirsk

T. Bul'bak

Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences

Email: panina@igm.nsc.ru
Ресей, Novosibirsk

Әдебиет тізімі

  1. Базарова Т.Ю. Термодинамические условия формирования некоторых нефелинсодержащих пород. Новосибирск: Наука, 1969. 112 с.
  2. Базарова Т.Ю., Шугурова H.A. Летучие компоненты при кристаллизации некоторых щелочных эффузивных и гипабиссальных пород // Докл. АН СССР. 1968. Т. 178. № 6. С. 1399–1401.
  3. Бульбак Т.А., Томиленко А.А., Гибшер Н.А. и др. Углеводороды во флюидных включениях из самородного золота, пирита и кварца месторождения Советское (Енисейский кряж, Россия) по данным беспиролизной газовой хромато-масс-спектрометрии // Геология и геофизика. 2020. Т. 61. № 11. С. 1535–1560.
  4. Егоров Л.С. Ийолит-карбонатитовый магматизм (на примере Маймеча-Котуйского комплекса Полярной Сибири). Л.: Недра, 1991. 260 с.
  5. Икорский C.B. О закономерностях распределения и времени накопления углеводородных газов в породах Хибинского щелочного массива // Геохимия. 1977. № 11. С. 1625–1634.
  6. Когарко Л.Н., Костольяни Ч., Рябчиков И.Д. Геохимия восстановительного флюида щелочных магм // Геохимия. 1986. № 12. С. 1688–1695.
  7. Кривдик С.Г., Нивин В.А., Кульчицкая А.А. и др. Углеводороды и другие летучие компоненты в щелочных породах Украинского щита и Кольского полуострова // Геохимия. 2007. № 3. С. 307–332.
  8. Наумов В.Б., Дорофеева В.А., Миронова О.Ф. Основные физико-химические параметры природных минералообразующих флюидов // Геохимия. 2009. № 8. С. 825–851.
  9. Низаметдинов И.Р., Кузьмин Д.В., Смирнов С.З. и др. Углеводороды в составе магматогенного флюида во вкрапленниках продуктов извержений влк. Меньший Брат (о. Итуруп) по данным беспиролизной ГХ-МС расплавных и флюидных включений // Геология и геофизика. 2022. Т. 63. № 8. С. 1075–1087.
  10. Нивин В.А. Молекулярно-массовое распределение насыщенных углеводородов в газах Ловозерского нефелин-сиенитового массива // Докл. АН. 2009. Т. 429. № 6. С. 799–801.
  11. Нивин В.А. Вариации состава и происхождение углеводородных газов из включений в минералах Хибинского и Ловозерского щелочных массивов (Кольский полуостров, Россия) // ЗРМО. 2011. Т. 140. № 2. С. 26–37.
  12. Нивин В.А., Коноплева Н.Г., Трелоар П., Икорский С.В. Формы нахождения, взаимосвязь и проблемы происхождения углеродистых соединений в породах Хибинского щелочного массива // Плюмы и проблема глубинных источников щелочного магматизма. Тр. III Международного семинара. 2003. С. 126–142.
  13. Панина Л.И., Исакова А.Т., Сазонов А.М. Оливиниты Крестовской интрузии – продукты кристаллизации ларнит-нормативной щелочно-ультрамафитовой магмы: данные изучения расплавных включений // Петрология. 2018. Т. 26. № 2. С. 163–177.
  14. Панина Л.И., Исакова А.Т., Рокосова Е.Ю. Генезис монтичеллитовых пород Крестовской интрузии Маймеча-Котуйской щелочно-ультраосновной провинции Восточной Сибири: по данным изучения расплавных включений // Петрология. 2023. Т. 31. № 1. С. 81–100. https://doi.org/10.31857/S0869590323010077
  15. Рябчиков И.Д., Когарко Л.Н., Соловова И.П. Физико-химические условия магмообразования в основании Сибирского плюма по данным исследования расплавных микровключений в меймечитах и щелочных пикритах Маймеча-Котуйской провинции // Петрология. 2009. № 3. С. 311–323.
  16. Сазонов А.М., Звягина Е.А., Леонтьев С.И. и др. Платиноносные щелочно-ультраосновные интрузии Полярной Сибири. Томск: Изд-во ИНТИ, 2001. 510 с.
  17. Сук Н.И. Экспериментальное исследование несмесимости силикатно-карбонатных систем // Петрология. 2001. Т. 9. № 5. С. 547–558.
  18. Томиленко А.А., Ковязин С.В., Похиленко Л.Н., Соболев Н.В. Первичные углеводородные включения в гранате алмазоносного эклогита из кимберлитовой трубки Удачная, Якутия // Докл. АН. 2009. Т. 426. № 4. С. 533–536.
  19. Томиленко А.А., Кузьмин Д.В., Бульбак Т.А. и др. Состав первичных флюидных и расплавных включений в регенерированных оливинах из гипабиссальных кимберлитов трубки Малокуонапская, Якутия // Докл. АН. 2015. Т. 465. № 2. С. 213.
  20. Томиленко А.А., Бульбак Т.А., Хоменко М.О. и др. Состав летучих компонентов в оливинах из разновозрастных кимберлитов Якутии (по данным газовой хромато-масс-спектрометрии) // Докл. АН. 2016. Т. 468. № 6. С. 684–689. https://doi.org/10.7868/S0869565216180237
  21. Томиленко А.А., Бульбак Т.А., Логвинова А.М. и др. Особенности состава летучих компонентов в алмазах из россыпей северо-востока Сибирской платформы (по данным газовой хромато-масс-спектрометрии) // Докл. АН. 2018. Т. 481. № 3. С. 310–314.
  22. Chalot-Prat F., Arnold M. Immiscibility between calciocarbonatites and silicate melts and related wall rock reactions in the upper mantle: A natural case study from Romanian mantle xenoliths // Lithos. 1999. V. 46. P. 627–659.
  23. Hamilton D.L., Kjarsgaard B.A. The immiscibility of silicate and carbonate melts, South African // J. Geol. 1993. V. 96. P. 139–142.
  24. Konnerup-Madsen J., Larsen E., Rose-Hansen J. Hydrocarbon-rich fluid inclusions in minerals from the alkaline Ilímaussaq intrusion, South Greenland // Bulletin de Minéralogie. 1979. V. 102. P. 642–653. https://doi.org/10.3406/bulmi.1979.7313
  25. Sobolev N.V., Tomilenko A.A., Bul’bak T.A., Logvinova A.M. Composition of hydrocarbons in diamonds, garnet, and olivine from diamondiferous peridotites from the Udachnaya Pipe in Yakutia, Russia // Engineering. 2019. V. 5. P. 471–478.
  26. Sonin V.M., Tomilenko A.A., Zhimulev E.I. et al. The composition of the fluid phase in inclusions in synthetic HPHT diamonds grown in system Fe–Ni–Ti–C // Sci. Rep. 2022. V. 12. 1246. https://doi.org/10.1038/s41598-022-05153-7
  27. Tomilenko A.A., Chepurov A.I., Sonin V.M. et al. The synthesis of methane and heavier hydrocarbons in the system graphite-ironserpentine at 2 and 4 GPa and 1200°C // High Temperatures – High Pressures. 2015. V. 44. P. 451–465.
  28. Tomilenko A.A., Bul’bak T.A., Timina T.Y. et al. Composition of volatiles of sulfide deposits and carbonate structures in submarine hydrothermal fields of the Mid-Atlantic Ridge // Marine Geol. 2022. V. 444. 106713. https://doi.org/10.1016/j.margeo.2021.106713
  29. Tomilenko A.A., Sonin V.M., Bul’bak T.A. et al. Impact of Solid Hydrocarbon on the Composition of Fluid Phase at the Subduction (Experimental Simulation) // Minerals. 2023. V. 13. 618. https://doi.org/10.3390/min13050618

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme of the geological structure of the Krestovskaya volcano-plutonic structure (Sazonov et al., 2001). 1 - modern alluvial deposits; 2 - undifferentiated Quaternary deposits; 3 - effusive sequence of melanephelinites; 4 - clastolaves of melanephelinites; 5, 6 - dikes: 5 - alkaline microsyenites; 6 - trachybasalts, trachydolerites, plagioclase porphyrites and picrites; 7 - nested dikes (microsyenites, trachybasalts, alkaline picrites); 8 - melilitholites; 9 - olivinites, wehrlites and pyroxenites; 10 - monticellitelites and olivine-monticellite rocks; 11 – facies of fenites and fenitized rocks: a – perovskite-aegirine-augite; b – titanite-biotite-aegirine-augite; 12 – perovskite fenites: a – uniformly fine-grained, b – blastoporphyritic; 13 – biotite-bearing fenitized rocks; 14 – injection melilitolite-ultramafics, skarnified and recrystallized rocks of the contact zone of melilitolite bodies; 15 – geological boundaries; 16 – supposed faults. The inset shows the geographical position of the Maimecha-Kotui province: G – Guli pluton; K – Krestovskaya intrusion.

Жүктеу (111KB)
3. Fig. 2. Inclusions in olivine from olivinites: (a) location of primary melt inclusions; (b) location of secondary fluid inclusions along a crack; (c, d) primary melt inclusions (Panina et al., 2018); (e) secondary fluid inclusions. (a, b, d) transmitted light image, (c, d) reflected electron image. Grt – garnet, Ks – kalsilite, Mtc – monticellite, Ol – olivine, Prv – perovskite, Phl – phlogopite, Mag – magnetite.

Жүктеу (63KB)
4. Fig. 3. Inclusions in minerals of olivine-monticellite rocks of the Krestovskaya intrusion: (a) location of primary melt inclusions in the center of a perovskite grain; (b, c) primary melt inclusions in perovskite (Panina et al., 2018, 2023); (d) location of primary melt inclusions in a monticellite grain; (e) location of secondary fluid inclusions along a crack in a monticellite grain; (e, g) primary melt inclusions in monticellite (Panina et al., 2023); (h) secondary fluid inclusions in monticellite. (d, e, f, g, h) – image in transmitted light; (a, b, c) – image in reflected electrons. Ap – apatite, Cal – calcite, Cpx – clinopyroxene, hGrt – hydrogarnet, Ks – calcilite, Mag – magnetite, Mtc – monticellite, Nph – nepheline, Pct – pectolite, Prv – perovskite, Phl – phlogopite, cc – salt aggregate, g. – gas phase, r.f. – ore phase.

Жүктеу (81KB)
5. Fig. 4. Primary melt inclusion in olivine of olivinites and KR spectra of its main phases. Mtc – monticellite, Ol – olivine, Phl – phlogopite, Mag – magnetite, Gas phase – gas phase.

Жүктеу (54KB)
6. Fig. 5. Primary melt inclusion in monticellite of olivine-monticellite rock and KR spectra of its main phases. Cal – calcite, Cpx – clinopyroxene, Mtc – monticellite, Gas phase – gas phase.

Жүктеу (29KB)
7. Fig. 6. Relative contents of hydrocarbons, carbon dioxide, water, and nitrogen-containing, sulfur-containing, and halogen-containing compounds in the gas phase of inclusions from olivines of olivinites (a), perovskites (b), and monticellites (c) of the olivine-monticellite rock of the Krestovskaya intrusion, obtained using GC-MS.

Жүктеу (34KB)
8. Fig. 7. Histogram of distribution of relative contents of: (a) aliphatic, cyclic, oxygen-containing hydrocarbons (HC); (b) “light” (C1–C4), “medium” (C5–C12), “heavy” (C13–C18) paraffins; (c) alcohols and ethers, aldehydes, ketones, and carboxylic acids in oxygen-containing HC compounds; (g) the sums of hydrocarbons, CO2, H2O, sulfur-containing, nitrogen-containing and chlorine-containing compounds in olivine of olivinites, perovskite and monticellite of olivine-monticellite rocks.

Жүктеу (43KB)
9. Results of GC-MS analysis of the gas phase extracted during impact destruction of olivine from olivinite of the Krestovsky massif (species diversity of 285 components)
Жүктеу (607KB)
10. Results of GC-MS analysis of the gas phase extracted during impact destruction of perovskite from olivine-monticellite rocks of the Krestovskaya intrusion (species diversity of 256 components)
Жүктеу (600KB)
11. Results of GC-MS analysis of the gas phase extracted during impact destruction of monticellite from olivine-monticellite rocks of the Krestovskaya intrusion (species diversity of 282 components)
Жүктеу (607KB)

© Russian academy of sciences, 2025