2019 ZAPISKI RMO (PROCEEDINGS OF THE RUSSIAN MINERALOGICAL SOCIETY) Pt CXLVIII, N 5

НОВЫЕ МИНЕРАЛЫ

DOI https://doi.org/10.30695/zrmo/2019.1485.02

© Д. чл. И. В. ПЕКОВ,* Л. П. АНИКИН,** д. чл. Н. В. ЧУКАНОВ,*** д. чл. Д. И. БЕЛАКОВСКИЙ,**** В. О. ЯПАСКУРТ,* д. чл. Е. Г. СИДОРОВ,** С. Н. БРИТВИН,***** Н. В. ЗУБКОВА*

ДЕЛЬТАЛЮМИТ — НОВАЯ ПРИРОДНАЯ МОДИФИКАЦИЯ ГЛИНОЗЕМА СО ШПИНЕЛЕПОДОБНОЙ СТРУКТУРОЙ¹

 Московский государственный университет, геологический факультет, 119991, Москва, Воробьевы горы; e-mail: igorpekov@mail.ru
 ** Институт вулканологии и сейсмологии ДВО РАН, 683006, Петропавловск-Камчатский, б-р Пийпа, 9 *** Институт проблем химической физики РАН, 142432, Московская обл., Черноголовка, пр. Академика Семенова, 1 **** Минералогический музей им. А. Е. Ферсмана РАН, 119071, Москва, Ленинский пр., 18-2
 **** Санкт-Петербургский государственный университетская наб., 7/9

Новый минерал дельталюмит, природная δ-модификация Al₂O₃, установлен в продуктах двух извержений действующего вулкана Плоский Толбачик (Камчатка, Россия). Он находится в порах базальтовой лавы и базальтового шлака, проработанных фумарольными газами, в виде округлых обособлений размером до 0.2 мм в поперечнике. Минерал желтоватый, светлобежевый или белый, просвечивающий, со стеклянным блеском, хрупкий. $D_{выч} = 3.663 \text{ г/см}^3$. Дельталюмит оптически одноосный (–), $n_0 = 1.654(2)$, $n_e = 1.653(2)$. Химический состав (электронно-зондовые данные): Al₂O₃ 99.74, SiO₂ 0.04, сумма 99.78 мас. %. Минерал тетрагональный, P-4m2, a = 5.608(1), c = 23.513(7) Å, V = 739.4(4) Å³, Z = 16. Дельталюмит относится к подгруппе шпинели в группе оксишпинелей; его структурная формула может быть записана как (Al_{0.67} $\square_{0.33}$)Al₂O₄, где \square — вакансия.

Ключевые слова: дельталюмит, новый минерал, дельта-модификация глинозема, надгруппа шпинели, группа оксишпинелей, фумарола, вулкан Толбачик, Камчатка.

I. V. PEKOV,* L. P. ANIKIN,** N. V. CHUKANOV,*** D. I. BELAKOVSKIY,**** V. O. YAPASKURT,* E. G. SIDOROV,** S. N. BRITVIN,***** N. V. ZUBKOVA.* DELTALUMITE, A NEW NATURAL MODIFICATION OF ALUMINA WITH SPINEL-TYPE STRUCTURE

* Faculty of Geology, Moscow State University, Moscow, Russia

** Institute of Volcanology and Seismology, Far Eastern Branch RAS, Petropavlovsk-Kamchatsky, Russia *** Institute of Problems of Chemical Physics RAS, Chernogolvka, Moscow Region, Russia **** Fersman Mineralogical Museum RAS, Moscow, Russia

***** Department of Crystallography, Saint Petersburg State University, Saint-Petersburg, Russia

The new mineral deltalumite, an analogue of the spinel-type synthetic δ -Al₂O₃, the second, after corundum α -Al₂O₃, natural modification of alumina, was found in products of two eruptions

¹ Новый минерал дельталюмит и его название одобрены Комиссией по новым минералам РМО и утверждены Комиссией по новым минералам, номенклатуре и классификации минералов ММА 11 июля 2016 г., IMA No. 2016-027.

of the Ploskiy Tolbachik Volcano (Kamchatka, Russia). It occurs in pores of basalt lava and basalt scoria altered by fumarolic gas. The mineral forms roundish aggregations up to 0.2 mm across which consist of blocky, coarse prismatic individuals up to 0.03 mm in size. Deltalumite is pale yellowish, pale beige or white, translucent, with vitreous lustre. The mineral is brittle. D_{cale} = 3.663 g cm⁻³. Deltalumite is optically uniaxial (-), $\omega = 1.654(2)$, $\varepsilon = 1.653(2)$ ($\lambda = 589$ nm). Chemical composition (electron microprobe) is: Al₂O₃ 99.74, SiO₂ 0.04, total 99.78 wt %. The strongest reflections of powder X-ray diffraction pattern [d,Å(I)(hkl)] are: 2.728(61)(202), 2.424(51)(212), 2.408(49)(213), 2.281(42)(206), 1.993(81)(1.0.11, 220, 221), 1.954(48)(0.0.12) and 1.396(100) (327, 400, 2.1.14). The mineral is tetragonal, space group *P*-4*m*2 (by analogy with synthetic δ -Al₂O₃), unit-cell dimensions are: a = 5.608(1), c = 23.513(7) Å, V = 739.4(4) Å³ and Z = 16. Deltalumite belongs to the spinel subgroup within the oxyspinel group, its structural formula can be written as (Al_{0.67} $\square_{0.33}$)Al₂O₄ in which \square means vacancy. The new mineral can be clearly distinguished from other modifications of alumina using powder X-ray diffraction pattern or IR spectrum.

Key words: deltalumite, new mineral, delta modification of alumina, spinel supergroup, oxyspinel group, fumarole, Tolbachik Volcano, Kamchatka.

введение

Для простого оксида алюминия — глинозема Al₂O₃ известно несколько синтетических структурных модификаций, среди которых численно преобладают шпинелеподобные. Вопросам полиморфизма этого соединения, особенностям строения разных его форм и структурным переходам между ними посвящена обширная литература (см., например, обобщающие работы: Wefers, Misra, 1987; Zhow, Snyder, 1991; Levin, Brandon, 1998; Wolverton, Hass, 2000). В то же время, в качестве достоверного минерального вида до недавнего времени была известна только одна модификация глинозема — корунд, тригональный α-Al₂O₃ со структурой типа гематита.

Нам удалось найти в литературе три публикации, в которых приводятся сколь-либо обоснованные сведения о находках других природных полиморфов глинозема. Так, δ-Al₂O₃ и θ-Al₂O₃ вместе с корундом установлены в тяжелой фракции многолетнемерзлых пород в двух местах в Якутии (Россия), а именно в верхнеплейстоценовых отложениях Быковского полуострова и в голоценовых осадках р. Улаах — притока Лены в ее среднем течении. Эти фазы идентифицированы по порошковым рентгенограммам, и для них предполагается кристаллизация в условиях, далеких от равновесных — при низких, возможно, ниже 0 °C, температурах (Зигерт и др., 1990). γ-Al₂O₃ отмечался, также на основании порошковых рентгенографических данных, в составе плотных пизолитов в латеритах хребта Дарлинг (Darling Range) в Западной Австралии, где с ним ассоциируют гётит, гематит, маггемит и, в подчиненных количествах, кварц, гиббсит, бёмит, анатаз и корунд (Singh, Gilkes, 1995). η-Al₂O₃ идентифицирован по данным порошковой рентгенографии и просвечивающей электронной микроскопии в бокситах месторождения Андум (Andoom) в Северном Квинсленде, Австралия (Tilley, Eggleton, 1996). Однако развернутой минералогической характеристики для этих находок не приводилось.

Нами шпинелеподобная модификация Al₂O₃ встречена в постэруптивных образованиях на вулкане Толбачик (Камчатка, Россия). Благодаря относительно крупным размерам монофазных обособлений удалось охарактеризовать ее минералогически и, несмотря на отсутствие пригодных для структурного исследования монокристаллов, показать несомненную принадлежность

этой природной формы глинозема к δ -Al₂O₃. По нашей заявке Комиссия по новым минералам, номенклатуре и классификации минералов Международной минералогической ассоциации (КНМНК ММА) утвердила ее как самостоятельный минеральный вид под названием дельталюмит, отражающим аналогию с известной синтетической дельта-модификацией Al₂O₃ (Pekov et al., 2016).

В 2018 г. КНМНК ММА приняла новую классификацию надгруппы шпинели, где дельталюмит вошел в состав подгруппы шпинели — подразделения группы оксишпинелей. По аналогии с прочими шпинелидами для него предложена идеализированная структурная формула типа AB_2X_4 , отражающая нахождение атомов металлов в двух разнотипных позициях: $(Al_{0.67}\square_{0.33})Al_2O_4$, где \square — вакансия (Bosi et al., 2019).

Эталонный образец дельталюмита хранится в систематической коллекции Минералогического музея им. А. Е. Ферсмана РАН в Москве (№ 95604).

УСЛОВИЯ НАХОЖДЕНИЯ И МОРФОЛОГИЯ

Дельталюмит найден в продуктах двух извержений действующего вулкана Плоский Толбачик, входящего в состав крупного вулканического массива Толбачик в южной части Ключевской группы вулканов. Общие сведения об этом вулканическом массиве можно найти в монографии (Большое.., 1984).

Наиболее детально изучен нами материал с Западного лавового потока трещинного извержения Плоского Толбачика, которое произошло в 2012—2013 гг. Оно получило название Трещинное Толбачинское извержение им. 50-летия Института вулканологии и сейсмологии ДВО РАН (или Юбилейное трещинное Толбачинское извержение), сокращеннно — ТТИ-50. Наиболее детально это извержение охарактеризовано в монографии (Толбачинское..., 2017). Западный лавовый поток ТТИ-50 возник в конце ноября—декабре 2012 г. Он протягивается к юго-западу от самого вулкана Плоский Толбачик. Проба, в которой Л. П. Аникин обнаружил будущий новый минерал, была отобрана в 2 км от его конца А. В. Сокоренко и А. А. Овсянниковым в декабре 2012 г. Из нее происходит голотип дельталюмита.

Вторая находка сделана Л. П. Аникиным в марте 2013 г. на лавовом потоке одного из древних извержений того же вулкана. Этот поток находится в верховьях р. Толуд к юго-востоку от Плоского Толбачика. Данный образец рассматривается как котип нового минерала.

В обоих проявлениях дельталюмит находится в мелких миндалинах (поpax) базальтовой лавы и базальтового шлака, проработанных фумарольными газами, и ассоциирует с корундом. Здесь же присутствуют основной плагиоклаз, авгит и форстерит, являющиеся более ранними по отношению к оксидам алюминия.

Дельталюмит образует изометричные, обычно округлые (рис. 1, a) или же угловатые (рис. 1, b) обособления с шероховатой поверхностью, достигающие 0.2 мм в поперечнике. Они состоят из грубопризматических индивидов размером до 0.03 мм, которые обладают блочным строением. К сожалению, не представляется возможным определить, являются эти индивиды собственными кристаллами дельталюмита, или же представляют собой его псевдоморфозы или параморфозы по какому-то другому мине-

Рис. 1. Типичная морфология обособлений дельталюмита. Изображение во вторичных электронах. Fig. 1. Typical morphology of deltalumite. SEM (SE) images.

ралу. Для обособлений дельталюмита, с поверхности выглядящих массивными (рис. 1), характерна тонкая пористость, и они легко раздавливаются иглой.

ФИЗИЧЕСКИЕ СВОЙСТВА, ОПТИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ХИМИЧЕСКИЙ СОСТАВ

Агрегаты дельталюмита просвечивающие, со стеклянным блеском. Минерал с Западного лавового потока ТТИ-50 имеет желтоватый или светло-бежевый до почти белого цвет, а обособления дельталюмита с древнего потока в верховьях р. Толуд белые. Черта белая. В ультрафиолетовых и катодных лучах минерал не люминесцирует. Спайности или отдельности не выявлено, излом неровный (как показывают наблюдения под сканирующим электронным микроскопом). Дельталюмит хрупкий. Твердость и плотность нового минерала определить не удалось, поскольку его выделения мелкие, тонкопористые и легко раскрашиваются. Вычисленная плотность составляет 3.663 г/см³.

Под микроскопом в проходящем свете дельталюмит (голотип) бледно-желтоватый, не плеохроирует. Это оптически одноосный отрицательный минерал с низким двупреломлением. Его показатели преломления, измеренные в иммерсионных жидкостях ($\lambda = 589$ нм): $n_0 = 1.654(2)$, $n_e = 1.653(2)$.

Химический состав дельталюмита определен в Лаборатории локальных методов исследования вещества кафедры петрологии МГУ на сканирующем электронном микроскопе JEOL JSM-6480LV с использованием волнового спектрометра INCA-Wave 500. Условия анализа: ускоряющее напряжение 20 кВ, ток зонда 20 нА, диаметр зонда 3 мкм. Эталоны: Al₂O₃ (Al), SiO₂ (Si). Содержания прочих элементов с атомными номерами >8 оказались ниже пределов обнаружения электронно-зондовым методом. Химический состав минерала (среднее по 10 анализам, в скобках — разброс значений): Al₂O₃ 99.74 (98.18—100.93), SiO₂ 0.04 (0.00—0.19), сумма 99.78 мас. %. Эмпирическая формула, рассчитанная на 3 атома O, по сути, совпадает с идеальной: Al₂₀₀O₃.

ИК-спектр порошка дельталюмита, запрессованного в таблетку с КВг (рис. 2, кривая *a*), снят на Фурье-спектрометре ALPHA FTIR (Bruker Optics, Германия) в диапазоне волновых чисел 360—3800 см⁻¹ при разрешающей способности 4 см⁻¹ и числе сканирований, равном 16. В качестве образца сравнения использовалась аналогичная таблетка из чистого КВг. Для сравнения на этом же рисунке приведены ИК-спектры синтетического γ -Al₂O₃ (кривая *б*) и корунда α -Al₂O₃ (кривая *в*).

Согласно имеющимся данным (Saniger, 1995), группы сильных перекрывающихся полос в ИК-спектрах модификаций глинозема со шпинелеподобными структурами в спектральных интервалах ~500—600 и ~700—800 см⁻¹ относятся, соответственно, к асимметричным валентным колебаниям полимеризованных октаэдров AlO₆ и валентным колебаниям изолированных тетраэдров AlO₄. Прочие полосы в диапазоне 400—1000 см⁻¹ соответствуют смешанным колебаниям с участием AlO₄ и AlO₆. Отнесение полосы, наблюдающейся вблизи 390 см⁻¹, неоднозначно; предположительно она может соответствовать деформационным колебаниям О—Al—O (Могдаwa et al., 2011). Слабые полосы в диапазоне 1000—1200 см⁻¹ относятся к обертонам и комбинационным модам.

В целом ИК-спектр дельталюмита близок к спектру родственной ему в структурном отношении γ -модификации Al_2O_3 , но существенно отличается от спектра корунда.

Отсутствие в ИК-спектре дельталюмита полос с волновыми числами выше 1200 см⁻¹ свидетельствует, что в этом минерале нет групп с химическими связями О—H, С—O и С—H.

Рис. 2. Порошковые ИК-спектры (*a*) дельталюмита, (*δ*) синтетического γ-Al₂O₃ (Saniger, 1995) и (*в*) синтетического аналога корунда (Mutschke et al., 2013).

Fig. 2. Powder IR absorption spectra of (*a*) deltalumite, (δ) synthetic γ -Al₂O₃ (Saniger, 1995) and (*b*) synthetic analogue of corundum (Mutschke et al., 2013).

РЕНТГЕНОДИФРАКЦИОННЫЕ ДАННЫЕ

Монокристальное рентгеновское исследование дельталюмита выполнить не представляется возможным по причине очень малого размера и несовершенства его индивидов, так что рентгенодифракционные данные для него получены методом порошка. Порошкограммы нового минерала сняты на дифрактометре Rigaku R-AXIS Rapid II с цилиндрическим IP детектором (монохроматизированное CoK_{α} -излучение; геометрия Дебая—Шеррера, d = 127.4 мм, экспозиция — 15 мин). Интегрирование исходных данных с цилиндрического детектора произведено с помощью программного пакета osc2tab (Бритвин и др., 2017). Рентгенограмма голотипного образца дельталюмита приведена в табл. 1.

Из порошковых рентгеновских данных четко видно, что дельталюмит (1) имеет структуру шпинелевого типа и (2) однозначно идентифицируется как природный аналог синтетического δ -Al₂O₃, а не других шпинелеподобных модификаций глинозема (табл. 1). По порошкограмме новый минерал очень сильно отличается от корунда (табл. 2).

Рассчитанные из порошковых данных параметры тетрагональной элементарной ячейки голотипа дельталюмита таковы: a = 5.608(1), c = 23.513(7) Å, V = 739.4(4) Å³, Z = 16. По аналогии с хорошо изученным синтетическим δ -Al₂O₃ (Repelin, Husson, 1990) мы предполагаем для нового минерала пространственную группу *P*-4*m*2.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Дельталюмит δ -Al₂O₃ диморфен с корундом α -Al₂O₃. Эти две модификации глинозема сильно различаются не только по расположению атомов в кристаллической структуре (рис. 3) и, соответственно, по симметрии, метрике элементарных ячеек и порошковым рентгенограммам, но и по физическим свойствам, в первую очередь, по плотности и показателям преломления (табл. 2). Структурные соотношения корунда и дельталюмита близки к тем, что известны для двух модификаций Fe₂O₃ — гематита и шпинелида маггемита.

Общая формула полиморфных модификаций глинозема, имеющих шпинелеподобные структуры с вакансионными дефектами в позициях катионов металлов, может быть записана в самом общем виде (M_3O_4) как $Al_{267}\square_{033}O_4$, а с разбивкой катионных позиций на два типа (AB_2O_4) — как $(Al_{0.67}\Box_{0.33})Al_2O_4$. Соотношение этих дефектных шпинелидов с полнокатионными хорошо демонстрируется на примере пары маггемит $Fe_2O_3 = (Fe^{3+}_{0.67} \square_{0.33})Fe^{3+}_{2}O_4$ — магнетит $Fe^{2+}Fe^{3+}_{2}O_{4}$ (Xu et al., 1997): см. рис. 3. Шпинелеподобные γ -, η - и σ -полиморфы Al₂O₃ относятся к кубической сингонии и кристаллизуются в пространственной группе (пр. гр.) Fd-3m (Shirasuka et al., 1976; Guse, Saalfeld, 1990; Li et al., 1990; Zhou, Snyder, 1991; Gutierrez et al., 2002; Smrčok et al., 2006; Dan'ko et al., 2008). Модификация у-Al₂O₃, помимо своей кубической формы (рис. 3, *г*) с параметром элементарной ячейки (п. э. я.) $a \approx 7.9$ Å, имеет также тетрагонально искаженную форму (рис. 3, в) с пр. гр. I4₁/amd и п. э. я. $a \approx 5.6$ и $c \approx 7.9$ Å (Li et al., 1990; Paglia et al., 2003). Шпинелеподобный δ-Al₂O₃ структурно близок к γ-модификации, но отличается от нее наличием сверхструктуры, что приводит к утроению параметра с элементарной ячейки $[a \approx 5.6$ и $c \approx 23.7$ Å (рис. 3, a, δ)] и переходу к пр. гр. *P*-4*m*2 (Repelin, Таблица 1

Результаты расчета порошковых рентгенограмм, симметрия и параметры элементарных ячеек шпинелеподобных модификаций глинозема — дельталюмита с Толбачика и синтетических б-, ү-, п- и σ-Al₂O₃

Powder X-ray diffraction data, symmetry and unit-cell dimensions of the spinel-type modifications of alumina:

Ĵ
1,0
<
6
pu
a
Έ
÷
Ŷ,
2
eti
th
Ľ,
T s
anc
iķ
ch
ba
0
OIL
Ę
ite
Ē
lu
lta
de

I_{mos} d_{ms} I_{ms}	Дельталюмит	омит	Син 8-7	тетич. Al ₂ O ₃	h k l	Синтети ү-А	ич. тетраг. М ₂ О ₃	h k l	Синтет ү-А	ич. куб. J ₂ O ₃	Синг η-А	тетич. М ₂ О ₃	Син σ-А	гетич. M ₂ O ₃	h k l
3 5.467 101 1 4.583 102 4.583 102 4.583 102 4.583 102 4.583 102 103 4.583 103 4.563 102 13 4.567 50 4.569 8 4.589 14 50 4.569 8 4.589 14 50 2.810 2.810 2.800 200 59 2.797 50 4.569 8 4.589 4.589 4.589 4.589 4.589 4.589 4.589 4.589 2.810 2.810 2.800 2.00 59 2.797 50 4.569 8 4.589 4.599 4.599 4.599 4.59<	d _{H3M} d _{Bb44}	$d_{\scriptscriptstyle {\rm BbH}}$	$I_{\rm H3M}$	$d_{{}_{\rm H3M}}$		$I_{\rm Bbt}^{*}$	$d_{\scriptscriptstyle {\rm BMY}}$		$I_{\scriptscriptstyle m Bbly}^{*}$	$d_{\scriptscriptstyle {\rm BbH}}$	$I_{\scriptscriptstyle m Bbly}^{*}$	$d_{\scriptscriptstyle {\rm BbH}}$	$I_{\scriptscriptstyle m Bbly}^{} *$	$d_{\scriptscriptstyle {\rm BBH}}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.45 5.455	5.455	 3	5.467	101										
	5.06 5.062	5.062	 2	5.063	102					-					
2 3.229 106 19 2800 200 59 2.797 7 39 2.810 30 2.786 116 37 2.800 200 59 2.797 7 39 2.810 30 2.786 116 37 2.788 112 9 2.810 37 2.810 37 2.810 37 37 37 37 2.793 37 2.793 37 2.810 37 2.810 37 2.810 37 2.810 37 2.810 37 2.810 37 2.810 37 2.810 37 2.810 37 2.810 37 2.810 37 2.310 37 2.493 210 37 2.335 45 2.336 100 2.396 37 2.315 100,118 52 2.372 103 52 2.336 45 2.336 6 2.394 37 2.315 100,118 52 2.372	4.55 4.561	4.561	15	4.548	103				13	4.567	50	4.569	8	4.589	111
29 2.880 107 19 2.800 200 19 2.800 200 39 2.810 30 2.810 30 2.810 30 2.810 30 2.786 116 37 2.788 112 30 2.786 116 37 2.788 112 30 2.810 30 2.810 37 2.788 112 39 2.810 30 2.810 37 2.797 39 2.810 30 310 311 37 2.793 31	3.225 3.212	3.212	2	3.229	106										
32 2.812 200 19 2.800 200 59 2.797 39 2.810 30 2.810 31 2.810 30 2.810 30 2.786 116 37 2.788 112 30 2.786 116 37 2.788 112 30 2.797 30 2.791 30 2.810 31 2.788 112 31 2.788 112 34 2.330 117 37 2.493 210 31 2.493 210 31 31 2.493 213 100 2.386 2.104 2.335 45 2.336 100 2.336 100 2.336 100 2.336 100 2.336 100 2.336 100 2.336 100 2.336 100 2.336 100 2.336 100 2.336 100 2.336 100 2.336 100 2.336 100 2.336 100 2.336 100 2.336 100 2.336 10	2.863 2.882	2.882	29	2.880	107					-					
30 2.786 116 37 2.788 112 71 2.788 116 37 2.788 116 71 2.728 202 71 2.728 202 71 2.738 202 71 2.738 202 71 2.738 202 71 2.738 202 71 78 71 2.433 210 78 210 78 213 210 2336 211 68 2.335 45 2.336 100 2.336 34 2.315 109,118 52 2.372 103 9 2.335 45 2.336 100 2.396 37 2.315 214 68 2.315 109,118 52 2.372 103 9 2.336 100 2.396 37 2.315 2.14 68 2.372 103 9 2.386 100 2.396 37 2.316 1.0111 43 1.964 2.201 9 2.2386	2.828 2.804	2.804	32	2.812	200	19	2.800	200	59	2.797			39	2.810	220
71 2.728 202 117 2.728 202 117 2.728 202 117 2.759 117 2.759 117 2.2590 117 2.2590 117 2.2590 117 2.2590 212 2.2493 210 2.336 210 2.336 210 2.336 210 2.336 210 2.336 210 2.336 210 2.336 200 2.336 200 2.336 200 2.336 200 2.336 200 2.336 200 2.336 200 2.336 2.306 2.336 2.306 2.3	2.777 2.787	2.787	30	2.786	116	37	2.788	112							
22 2.590 117 1<	2.728 2.728	2.728	71	2.728	202										
37 2.493 210 1 68 2.385 45 2.386 100 2.396 2.396 100 2.396 100 2.396 100 2.396 100 2.396 100 2.396 100 2.396 100 2.396 2.103 45 2.386 100 2.396	2.588 2.563	2.563	22	2.590	117										
56 2.443 212 100 2.386 211 68 2.385 45 2.386 100 2.396 34 2.373 109,118 52 2.372 103 45 2.386 100 2.396 <th>2.543 2.508</th> <td>2.508</td> <td> 37</td> <td>2.493</td> <td>210</td> <td></td>	2.543 2.508	2.508	 37	2.493	210										
43 2.409 213 100 2.386 211 68 2.385 45 2.386 100 2.396 34 2.373 109,118 52 2.372 103 68 2.385 45 2.386 100 2.396 37 2.315 214 52 2.372 103 8 2.385 65 2.396 50 2.279 206 8 2.280 202 8 2.284 19 2.285 6 2.294 45 2.014 1.0.11 43 1.964 220 98 1.978 78 1.979 48 1.987 70 1.986 220 201 98 1.978 78 1.979 48 1.987 30 1.969 0.0.12 21 1.964 0.04 1.978 78 1.979 48 1.987 30 1.969 0.0.12 21 1.964 0.04 1 1.979 48	2.424 2.453	2.453	56	2.443	212										
34 2.373 109,118 52 2.372 103 1	2.408 2.389	2.389	 43	2.409	213	100	2.386	211	68	2.385	45	2.386	100	2.396	311
37 2.315 214 8 2.280 202 8 2.284 19 2.285 6 2.294 50 2.279 206 8 2.280 202 8 2.284 19 2.285 6 2.294 45 2.014 1.0.11 43 1.964 220 98 1.978 78 1.979 48 1.987 60 2.006 220 98 1.978 78 1.979 48 1.987 70 1.986 221 21 1.964 004 78 1.979 48 1.987 30 1.969 0.0.12 21 1.964 004 78 1.979 48 1.987 36 1.947 222 21 1.964 004 78 1.979 48 1.987 36 1.947 222 21 1.964 004 78 1.979 48 1.987 36 1.947 222	2.372 2.368, 2.361	2.368, 2.361	34	2.373	109, 118	52	2.372	103							
50 2.279 206 8 2.280 202 8 2.284 19 2.285 6 2.294 45 2.014 1.0.11 43 1.964 220 98 1.978 78 1.979 48 1.987 60 2.006 220 98 1.978 78 1.979 48 1.987 70 1.986 221 1.964 0.04 78 1.979 48 1.987 30 1.969 0.0.12 21 1.964 004 78 1.979 48 1.987 36 1.947 222 21 1.964 004 78 1.979 48 1.987 16 1.913 218 32 1.913 218 78 1.979 48 1.987	2.315 2.307	2.307	37	2.315	214										
45 2.014 1.0.11 43 1.964 220 98 1.978 78 1.979 48 1.987 60 2.006 220 36 1.978 78 1.979 48 1.987 70 1.986 221 21 1.964 004 98 1.978 78 1.979 48 1.987 30 1.969 0.0.12 21 1.964 004 98 1.978 78 1.979 48 1.987 36 1.947 222 21 1.964 004 9 9 1.913 218 78 1.979 48 1.987	2.281 2.280	2.280	 50	2.279	206	8	2.280	202	~	2.284	19	2.285	9	2.294	222
60 2.006 220 70 1.986 221 30 1.969 0.0.12 21 36 1.947 222 36 1.913 218	1.993 1.997	1.997	45	2.014	1.0.11	43	1.964	220	98	1.978	78	1.979	48	1.987	400
70 1.986 221 30 1.969 0.0.12 21 36 1.947 222 36 1.913 218	1.983	1.983	60	2.006	220										
30 1.969 0.0.12 21 1.964 004 36 1.947 222 1.964 004 1.913 218	1.976	1.976	70	1.986	221										
36 1.947 222 16 1.913 218	1.954 1.959	1.959	 30	1.969	0.0.12	21	1.964	004							
16 1.913 218 1 1 1 1	1.948 1.955	1.955	 36	1.947	222										
	1.912 1.908	1.908	 16	1.913	218										

(әпнәжи	hkl		331			422		511					440			531			620			533		444	
1 (npodo	етич. J ₂ O ₃	$d_{\scriptscriptstyle {\rm BMY}}$				1.622		1.530					1.405						1.257			1.212		1.147	
аблица	Синт 6-А	$I_{\scriptscriptstyle { m BbH}}^{*}$				11		31					58						ю			7		4	
F	етич. J ₂ O ₃	$d_{\scriptscriptstyle {\rm BbH}}$	1.816			1.615		1.523					1.399			1.338			1.251			1.207		1.142	
	Синл η-А	$I_{\scriptscriptstyle { m BbH}}^{} *$	11			7		22					100			12			1			4		8	
-	ич. куб. 1 ₂ О ₃	$d_{\scriptscriptstyle {\rm BM4}}$	1.815			1.615		1.522			-		1.398						1.251			1.206		1.142	
	Синтет ү-А	$I_{\scriptscriptstyle { m BbH}}^{*}$	٢			13		20					100						б			8		~	
-	h k l		301 213	C17		312	204	321 303	505	105			400	224					420	332	116	413	305	404	
-	ч. тетраг. 1 ₂ О ₃	$d_{\scriptscriptstyle {\rm BM4}}$	1.816	010.1		1.614	1.608	1.524	070.1	1.512			1.400	1.394					1.252	1.251	1.243	1.206	1.202	1.140	
	Синтети ү-А	$I_{\scriptscriptstyle { m BbH}}^{*}$		-		6	5	14	17	٢			27	53					2	2	2	7	5	9	
	h k l		303, 219	304	2.1.11	316, 2.0.12		323, 309		318, 2.2.10, 1.0.15	2.2.11	2.0.14	327, 3.0.11	400, 401	2.1.14, 2.2.12		3.2.10,407	416, 2.2.14	417, 3.2.11,	420, 336,	1.1.18	419, 4.0.10,	3.0.15	4.1.11	4.0.12 2.2.17
-	етич. Д ₂ О ₃	$d_{\scriptscriptstyle \mathrm{HBM}}$	1.806	1.789	1.628	1.610		1.538		1.517	1.456	1.445	1.400	1.396	1.391		1.292	1.284	1.259			1.227		1.151	1.144 1.140
	Синт δ-А	$I_{\rm H3M}$	4	4	ю	4		19		16	17	16	56	90	100		4	4	5			2		6	10 5
-	ЭМИТ	$d_{\scriptscriptstyle {\rm BbH}}$	1.818, 1.809	1.781	1.627	1.616, 1.606		1.526, 1.520		$\begin{array}{c} 1.518, 1.516, \\ 1.510 \end{array}$	1.454, 1.441		1.411, 1.407	1.402, 1.399	1.395, 1.394		1.297, 1.294	1.285, 1.281	1.261, 1.258,	1.254, 1.253,	1.241	1.206, 1.204,	1.201	1.147	1.140 1.134
	Дельталк	$d_{_{\rm H3M}}$	1.804	1.796	1.630	1.607		1.536		1.511	1.450		1.396				1.295	1.282	1.260			1.223		1.143	
		$I_{\scriptscriptstyle \mathrm{HBM}}$	9	10	2	б		14		10	7		100				2	4	с			5		12	

			Ky6.	Fd-3m	a = 7.948(2)	V = 502.1		Guse, Saalfeld, 1990 [ICDD 79—1557]
5 1.108		Å; V , Å ³)	Ky6.	Fd-3m	a = 7.914(2)	V = 495.7		Zhou, Snyder, 1991 [ICDD 79—1557]
		арной ячейки (a, c, .	Ky6.	Fd-3m	a = 7.911(2)	V = 495.1		Zhou, Snyder, 1991 [ICDD 79—1558]
		ппа и параметры элемент	траг.	/amd	= 5.6(2)	= 7.854(6) = 246	Источник	Li et al., 1990 [ICDD 89—956]
4.2.10, 3.2.15 434, 1.0.21 508 517	520 522	странственная гру	Te	14	a			
1.107 1.101 1.048 1.044	1.040	нгония, про			(01)66	657(50) 1.6		in, Husson, 1990
ω 0	· ω ν	Си	Тетраг	P-4m2	a = 5.5	c = 23. V = 74.		Repel
1.106, 1.104 1.102, 1.098 1.048 1.045	1.041 1.037							і работа
1.104	1.036				3(1)	[3(7) 4		Іастоящая
0 0	N N		Тетраг.	P-4m2**	a = 5.608	c = 23.51 V = 739.4		ц

Примечание. * Для расчетных порошкограмм даны только рефлексы с I≥1; ** по аналогии с синтетической фазой δ-Al₂O₃.

Таблица 2

Сравнительная характеристик	а корунда и дельталюмита
Comparative data of coru	ndum and deltalumite

Минерал	Корунд	Дельталюмит
Формула	Al ₂ O ₃	Al ₂ O ₃
Сингония	Тригональная	Тетрагональная
Пространственная группа	R-3c	P-4m2*
<i>a</i> , Å	4.75-4.77	5.608(3)
<i>c</i> , Å	12.94—13.04	23.513(7)
V, Å ³	254—257	739.4(4)
Ζ	6	16
Главные линии порошковой рентгенограммы: d, A	3.48—70	2.728—61
	2.551—97	2.424—51
	2.379—42	2.408-49
	2.085—100	2.281—42
	1.740—42	1.993—81
	1.601—82	1.954—48
	1.374—45	1.396—100
Плотность, г/см ³	3.95—4.10 (изм.)	3.66 (выч.)
	3.95 (выч.)	
Оптические данные (589 нм)	Одноосный (-)**	Одноосный (-)
n _o	1.767—1.771	1.654
n _e	1.759—1.763	1.653
Источник	Минералы, 1965; Anthony et al., 1997	Настоящая работа

 Π римечание. * По аналогии с синтетическим δ -Al₂O₃ (Repelin, Husson, 1990); ** некоторые образцы демонстрируют аномальную оптическую двуосность.

Рис. 3. Кристаллические структуры (вычерчены по литературным данным) различных шпинелеподобных модификаций глинозема (*a*—*d*): *a* и *б* — δ-Al₂O₃ в двух проекциях (по: Repelin, Husson, 1990); *в* — тетрагональный γ-Al₂O₃ (по: Li et al., 1990); *г* — кубический γ-Al₂O₃ (по: Gutierrez et al., 2002); *д* — θ-Al₂O₃ (по: Husson, Repelin, 1996). Структуры маггемита Fe₂O₃ (*e*, по: Xu et al., 1997),

Рис. 3 (продолжение).

шпинели MgAl₂O₄ (ж, по: Ito et al., 2000) и корунда (з, по: Newnham, de Haan, 1962) приведены для сравнения. Серые кружки — атомы Al (e — атомы Fe), черные кружки — атомы O. Показаны элементарные ячейки.

Fig. 3. Crystal structures (drawn based on literature data) of different spinel-type modifications of alumina $(a-\partial)$: *a* and $\delta - \delta$ -Al₂O₃ in two projections (Repelin, Husson, 1990); *e* - tetragonal γ -Al₂O₃ (Li et al., 1990); *e* - cubic γ -Al₂O₃ (Gutierrez et al., 2002); $\partial - \theta$ -Al₂O₃ (Husson, Repelin, 1996). The structures of maghemite Fe₂O₃ (*e*: Xu et al., 1997), spinel MgAl₂O₄ (*m*: Ito et al., 2000) and corundum (*s*: Newnham, de Haan, 1962) are shown for comparison. Grey circles are Al atoms (in *e*: Fe atoms), black circles are O atoms. The unit cells are outlined.

Husson, 1990). Тетрагональные δ - и γ -Al₂O₃ четко отличаются как друг от друга (Wolverton, Hass, 2000), так и от кубических шпинелеподобных модификаций глинозема по порошковым рентгенограммам (табл. 1). Полиморф θ -Al₂O₃ имеет моноклинно искаженную (пр. гр. *C*2/*m*) шпинелеподобную структуру (Zhou, Snyder, 1991; Husson, Repelin, 1996) (рис. 3, ∂) и тоже отличается от других форм глинозема по порошкограмме.

Отметим, что кроме корунда α -Al₂O₃ и перечисленных абзацем выше шпинелеподобных полиморфов для синтетического Al₂O₃ также известны модификации χ и к с другими структурами (Wefers, Misra, 1987).

Разные формы глинозема могут быть получены нагреванием различных гидроксидов алюминия, причем для каждого из этих гидроксидов-прекурсоров характерна своя, индивидуальная цепочка превращений в температурном интервале между 250 и 1000 °C. Все эти ряды термических преобразований завершаются формированием корунда (α-Al₂O₃). В целом они выглядят следующим образом:

диаспор α -AlOOH $\rightarrow \alpha$ -Al₂O₃; бёмит γ -AlOOH $\rightarrow \gamma$ -Al₂O₃ $\rightarrow \delta$ -Al₂O₃ $\rightarrow \theta$ -Al₂O₃ $\rightarrow \alpha$ -Al₂O₃; байерит α -Al(OH)₃ $\rightarrow \eta$ -Al₂O₃ $\rightarrow \theta$ -Al₂O₃ $\rightarrow \alpha$ -Al₂O₃; гиббсит γ -Al(OH)₃ $\rightarrow \chi$ -Al₂O₃ $\rightarrow \kappa$ -Al₂O₃ $\rightarrow \alpha$ -Al₂O₃ (Wefers, Misra, 1987).

Как можно видеть, δ -Al₂O₃ является членом ряда термических превращений, начальная фаза которого — бёмит. Приблизительные температурные интервалы существования различных модификаций глинозема в этом ряду оцениваются так: бёмит (<500 °C) $\rightarrow \gamma$ -Al₂O₃ (500—700 °C) $\rightarrow \delta$ -Al₂O₃ (700— 900 °C) $\rightarrow \theta$ -Al₂O₃ (900—1000 °C) $\rightarrow \alpha$ -Al₂O₃ (>1000 °C) (Wilson, McConnell, 1980; Levin, Brandon, 1998).

Монокристаллы δ -Al₂O₃ нанометровых размеров были также получены электролитическим методом в температурном диапазоне между 600 и 800 °C (Tamura et al., 2004).

По нашему мнению, образование дельталюмита на Толбачике связано с процессами взаимодействия фумарольного газа и базальта. Именно последний представляется наиболее вероятным источником алюминия, имеющего низкую летучесть в вулканическом газе даже при температурах выше 500 °C (Symonds, Reed, 1993). Отметим, что находки корунда и высокоглиноземистых оксидов группы шпинели не являются редкостью для высокотемпературных (600—800 °C) фумарол Толбачика (Pekov et al., 2014, 2018). Возможно, дельталюмит самостоятельно кристаллизовался при этих температурах или же явился продуктом преобразования ранее возникших глиноземистых минералов (бёмита? гипотетической фазы γ -Al₂O₃?) — в результате вторичного разогрева под воздействием горячего газа при попадании уже частично остывших участ-ков лавового потока в зону фумарольной проработки.

Авторы благодарны А. В. Сокоренко и А. А. Овсянникову, отобравшим пробы лавы на Западном потоке ТТИ-50. Работа выполнена при поддержке Российского научного фонда, грант № 19-17-00050. Рентгеновское изучение порошка минерала осуществлено на оборудовании ресурсного центра «Рент-генодифракционные методы исследования» СПбГУ.

Большое трещинное Толбачинское извержение, Камчатка, 1975—1976 (ред. С. А. Федотов). М.: Наука, **1984**. 637 с.

Бритвин С. Н., Доливо-Добровольский Д. В., Кржижановская М. Г. Программный пакет для обработки рентгеновских порошковых данных, полученных с цилиндрического детектора дифрактометра Rigaku RAXIS Rapid II // ЗРМО. 2017. № 3. С. 104—107.

Зигерт Х., Широков А. Л., Никишова Л. В., Павлова Л. А., Бабий О. А. Природные аналоги модификаций глинозема (δ-Al₂O₃ и θ-Al₂O₃) в осадках области вечной мерзлоты // ДАН СССР. **1990**. Т. 313. С. 689—692.

Минералы. Справочник. Т. II, вып. 2. Простые окислы. М.: Наука, 1965. 342 с.

Толбачинское трещинное извержение 2012—2013 гг. (ТТИ-50) (ред. Е. И. Гордеев и Н. Л. Добрецов). Новосибирск: Изд-во СО РАН, **2017**. 421 с.

References

Anthony J. W., Bideaux R. A., Bladh K. W., Nichols M. C. Handbook of Mineralogy. III. Halides, Hydroxides, Oxides. Tucson: Mineral Data Publishing, **1997**. 628 p.

Bosi F., Biagioni C., Pasero M. Nomenclature and classification of the spinel supergroup. Eur. J. Miner. 2019. Vol. 31. No. 1. P. 183–192.

Britvin S. N., Dolivo-Dobrovolsky D. V., Krzhizhanovskaya M. G. Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski RMO (Proc. Russian Miner. Soc.). 2017. Vol. 146. No. 3. P. 104–107 (in Russian).

Dan'ko A. J., Rom M. A., Sidelnikova N. S., Nizhankovskiy S. V., Budnikov A. T., Grin' Yu., Kaltaev K. S. Transformation of the corundum structure upon high-temperature reduction. Cryst. Rep. **2008**. Vol. 53. No. 7. P. 1112–1118.

Guse W., Saalfeld H. X-ray characterization and structure refinement of a new cubic alumina phase (sigma-Al₂O₃) with spinel-type structure. *N. Jb. Miner. Mh.* **1990**. H. 5. P. 217–226.

Gutierrez G., Taga A., Johansson B. Theoretical structure determination of gamma-(Al₂O₃). *Phys. Rev. B.* **2002**. Vol. 65. Pt. 1. 012101/1—012101/4.

Husson E., Repelin Y. Structural studies of transition aluminas. Theta alumina. Eur. J. Solid State Inorg. Chem. **1996**. Vol. 33. P. 1223–1231.

Ito T., Yoshiasa A., Yamanaka T., Nakatsuka A., Maekawa H. Site preference of cations and structural variation in $MgAl_{2x}Ga_xO4$ ($0 \le x \le 2$) spinel solid solution. *Zeit. Anorg. Allgem. Chemie.* **2000**. Vol. 626. P. 42–49.

Levin I., Brandon D. Metastable alumina polymorphs: crystal structures and transition sequences. *J. Amer. Ceramic Soc.* **1998**. Vol. 81. P. 1995—2012.

Li D.-L., O'Connor B. H., Roach G. I. D., Cornell J. B. Structural models of eta- and gamma-aluminas by X-ray Rietveld refinement. Acta Cryst. A. 1990. Vol. 46, C61.

Minerals. Reference Book. Vol. II, issue 2. Simple Oxides. Moscow: Nauka, 1965. 342 p. (*in Russian*).

Mozgawa W., Król M., Barczyk K. FT-IR studies of zeolites from different structural groups. CHEMIK. 2011. Vol. 65. No. 7. P. 667-674.

Mutschke H., Min M., Tamanai A. Laboratory-based grain-shape models for simulating dust infrared spectra. Astronomy & Astrophysics manuscript no. 12267. 2013. P. 1–8.

Newnham R. E., de Haan Y. M. Refinement of the Al_2O_3 — alpha, Ti_2O_3 , V_2O_3 and Cr_2O_3 structures. *Z. Krist.* **1962**. Vol. 117. P. 235—237.

Paglia G., Buckley C. E., Rohl A. L., Hunter B. A., Hart R. D., Hanna J. V., Byrne L. T. Tetragonal structure model for boehmite-derived gamma-alumina. *Phys. Rev. B.* **2003**. Vol. 68. 144110/1— 144110/11.

Pekov I. V., Zubkova N. V., Yapaskurt V. O., Belakovskiy D. I., Lykova I. S., Vigasina M. F., Sidorov E. G., Pushcharovsky D. Yu. New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na₇(Fe³⁺,Mg,Cu)₄(AsO₄)₆. *Miner. Mag.* **2014**. Vol. 78. P. 905–917.

Pekov I. V., Anikin L. P., Chukanov N. V., Belakovskiy D. I., Yapaskurt V. O., Sidorov, E. G., Britvin S. N., Zubkova N. V. Deltalumite, IMA 2016-027. CNMNC Newsletter No. 32, August 2016, page 919. Miner. Mag. 2016. Vol. 80. P. 915—922.

Pekov I. V., Sandalov F. D., Koshlyakova N. N., Vigasina M. F., Polekhovsky Y. S., Britvin S. N., Sidorov E. G., Turchkova A. G. Copper in natural oxide spinels: the new mineral thermaerogenite CuAl₂O₄, cuprospinel and Cu-enriched varieties of other spinel-group members from fumaroles of the Tolbachik volcano, Kamchatka, Russia. *Minerals.* **2018**. Vol. 8(11). Paper 498.

Repelin Y., Husson E. Etudes structurales d'alumines de transition. I — Alumines gamma et delta. *Mater. Res. Bull.* **1990**. Vol. 25. P. 611—621.

Saniger J. M. Al—O infrared vibrational frequencies of γ-alumina. *Mater. Letters.* **1995**. Vol. 22. No. 1. P. 109—113.

Shirasuka K., Yanagida H., Yanaguchi G. The preparation of eta alumina and its structure. Yogyo Kyokai Shi (J. Ceramic Assoc. of Japan). **1976**. Vol. 84. P. 610–613.

Siegert Ch., Shirokov A. L., Nikishova L. V., Pavlova L. A., Babiy O. A. Natural analogues of the alumina modifications (δ-Al₂O₃ and θ-Al₂O₃) in permafrost-area sediments. *Doklady USSR Acad. Sci.* **1990**. Vol. 313. P. 689–692 (*in Russian*).

Singh B., Gilkes R. J. The natural occurrence of χ -alumina in lateritic pisolites. Clay Minerals. **1995**. Vol. 30. P. 39–44.

Smrčok L., Langer V., Křesťan J. γ-Alumina: a single-crystal X-ray diffraction study. Acta Cryst. C. 2006. Vol. 62. No. 9. P. i83—i84.

Symonds R. B., Reed M. H. Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. *Amer. J. Sci.* **1993**. Vol. 293. P. 758—864.

Tamura S., Kim Y.-W., Masui T., Imanaka M. Electrochemical growth of nanometer-sized δ -Al₂O₃ single crystals by use of Al³⁺ conducting solid electrolyte. *Solid State Ionics.* **2004**. Vol. 173. P. 131–134.

The Great Tolbachik Fissure Eruption (eds S. A. Fedotov and Y. K. Markhinin). New York: Cambridge University Press, **1983**. 341 p.

Tilley D. B., Eggleton R. A. The natural occurrence of eta-alumina $(\eta$ -Al₂O₃) in bauxite. *Clays and Clay Minerals.* **1996.** Vol. 44. P. 658–664.

Tolbachik Fissure Eruption of 2012—2013 (TFE-50) (eds E. I. Gordeev and N. L. Dobretsov). SO RAN Publishing, Novosibirsk, **2017**. 421 p. (*in Russian*)

Wefers K., Misra C. Oxides and Hydroxides of Aluminum. Alcoa Technical Paper No. 19. Alcoa Laboratories, Pittsburgh, PA, **1987**. 92 pp.

Wilson S. J., McConnell J. D. C. A kinetic study of the system γ -AlOOH/Al₂O₃. *J. Solid State Chem.* **1980**. Vol. 34. P. 315–322.

Wolverton C., Hass K. C. Phase stability and structure of spinel-based transition aluminas. *Phys. Rev. B.* **2000**. Vol. 63, 024102/1–024102/16.

Xu W., Peacor D. R., Dollase W. A., Van Der Voo R., Beaubeuf R. Transformation of titanomagnetite to titanomaghemite: A slow, two-step, oxidation-ordering process in MORB. Amer. Miner. **1997**. Vol. 82. P. 1101–1110.

Zhou R.-S., Snyder R. L. Structures and transformation mechanisms of the eta, gamma and theta transition aluminas. Acta Cryst. B. 1991. Vol. 47. P. 617–630.

Поступила в редакцию 20 мая 2019 г.