Ontogenetic orientations to choose the model of the formation of platinum-bearing mineralization in zonal clinopyroxenite-dunite massifs of the Urals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Results of ontogenetic studies of the early paragenesis of ore minerals in zonal clinopyroxenite-dunite massifes of the Middle Urals are discussed. It is shown that the formation of these minerals occurs in the following order: iridosmium → chrome-spinel → laurite-erlichmanite → оsmiridium → isoferroplatinum. Revealed ontogenic features of ore phases are in good agreement with models suggesting the concentration of platinum group metals at the magmatic stage of evolution of the clinopyroxenite-dunite massif before display of the superimposed high-temperature plastic deformation.

Full Text

Restricted Access

About the authors

A. V. Kozlov

Saint Petersburg Mining University

Author for correspondence.
Email: akozlov@spmi.ru
Russian Federation, Saint Petersburg

S. Yu. Stepanov

Zavaritsky Institute of Geology and Geochemistry, Ural Branch RAS

Email: akozlov@spmi.ru
Russian Federation, Yekaterinburg

R. S. Palamarchuk

Saint Petersburg Mining University

Email: akozlov@spmi.ru
Russian Federation, Saint Petersburg

A. M. Minibayev

Saint Petersburg Mining University

Email: akozlov@spmi.ru
Russian Federation, Saint Petersburg

References

  1. Auge T., Genna A., Legendre O., Ivanov K. S., Volchenko Yu. A. Primary platinum mineralization in the Nizhny Tagil and Kachkanar ultramafic complexes, Urals, Russia: A genetic model for PGE concentration in chromite-rich zones. Econ. Geol. 2005. Vol. 100. P. 707-732.
  2. Betekhtin A. G. Platinum and other platinum group minerals. Moscow; Leningrad: USSR Academy of Science, 1935. 148 p. (in Russian).
  3. Genkin A. D. Consequence and conditions of the platinum group minerals in the Nizhnetagilsky dunite massif. Geol. Ore Deposits. 1997. Vol. 39. N 1. P. 41-48 (in Russian).
  4. Grigoryev D. P. Ontogeny of minerals. Lvov: Lvov University, 1961. 283 p.
  5. Ivanov O. K. Concentric-zonal pyroxenite-dunite massifs of the Urals. Ekaterinburg: Ural. University, 1997. 488 p. (in Russian).
  6. Ivanov K. S. Genesis of chromium-platinum ore mineralization of the Uralian (Nizhnii Tagil) type. Doklady Earth Sci. 2011. Vol. 441. N 1. P. 1489-1491.
  7. Johan Z. Alaskan-type complexes and their platinum-group element mineralization. In: The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements. Canad. Inst. Mining, Metall. Petrol. 2002. Special Vol. 54. P. 669-719.
  8. Karpinsky A. P. About the bedrock platinum deposit in the Urals. Notes Academ. Sci. 1893. Vol. 71. P. 222-229 (in Russian).
  9. Karpinsky A. P. About probable origin of platinum deposits of the Urals type. Trans. USSR Acad. Sci. 1926. VI ser. Vol. 20. Iss. 1-2. P. 133-170 (in Russian).
  10. Malich K. N., Lopatin G. G. New data on the metallogeny of the unique Guli clinopyroxenite-dunite massif (Northern Siberia, Russia). Geol. Ore Deposits. 1997. Vol. 39. N 3. P. 247-257 (in Russian).
  11. Malich K. N., Stepanov S. Yu., Badanina I. Yu., Hiller V. V. Mineral associations of platinoids in Svetloborsky, Veresovoborsky and Nizhnetagil’sky clinipyroxenite-dunite massifs of the Middle Urals. Report. Urals Division Russian. Miner. Soc. Yekaterinburg, 2015. N 12. P. 65-83 (in Russian).
  12. Malitch K. N., Thalhammer O. A. R. Pt-Fe nuggets derived from clinopyroxenite-dunite massifs, Russia: a structural, compositional and osmium-isotope study. Canad. Miner. 2002. Vol. 40. P. 395-418.
  13. Mosin K. I. The history of platinum mining in the Urals. Nizhnyaya Tura, 2002. 246 p. (in Russian).
  14. Okrugin A. V. Crystallization-liquation model of the formation of PGE-chromitites ores in mafic-ultramafic complexes. Russian J. Pacific Geol. 2004. Vol. 23 N 2. P. 63-75 (in Russia).
  15. Okrugin A. V. The formation of large nuggets of platinum in the chromite ores of mafic-ultramafic rocks. Sci. Education. 2011. N 3. P. 16-20 (in Russia).
  16. Pushkarev E. V., Kamenetsky V. S., Morozova A. V., Hiller V. V., Glavatskikh S. P., Rodemann T. Ontogeny of ore Cr-spinel and composition of inclusions as indicators of the pneumatolytic-hydrothermal origin of PGM-bearing chromitites from Kondyor massif, the Aldan Shield. Geol. Ore Deposits. 2015. Vol. 57. N 5. P. 352-380.
  17. Pushkarev E. V., Anikina E. V., Garuti J., Zakkarini F. Chromium-platinum deposits of Nizhny-Tagil type in the Urals: structural-substantial characteristic and a problem of genesis. Lithosfera. 2007. N 3. P. 28-65 (in Russian).
  18. Stepanov S. Yu. Ontogeny of platinum group minerals in zonal ultramafite massifs (the Middle Urals). In: Proc. Conf. «Ontogeny, Phylogeny and the System of Mineralogy». Miass, 2015. P. 182-186 (inRussian).
  19. Stepanov S. Yu., Malich K. N., Kozlov A. V., Badanina I. Yu., Antonov A. V. Platinum group element mineralization of the Svetly Bor and Veresovy Bor clinopyroxenite-dunite massifs, Middle Urals, Russia. Geol. Ore Deposits, 2017. Vol. 59. № 3. P. 244-255.
  20. Tolstykh N. D. Mineral associations of platinum-bearing placers and their genetic correlations with primary sources. D. Sc. thesis syn. Novosibirsk, 2004. 33 p. (in Russian).
  21. Tolstykh N. D., Telegin Yu. M., Kozlov A. P. Platinum mineralization of the Svetloborsky and Kamenushinsky massifs (Urals Platinum Belt). Russian Geol. Geophys. 2011. Vol. 52. N 6. P. 603-619.
  22. Volchenko Yu. A. Parageneses of platinoids in the Urals chromite ores. In: Petrology and ore-forming. Sverdlovsk, 1986. P. 56-63 (in Russian).
  23. Vysotsky N. K. Platinum deposits of the Isovsky and Nizhne-Tagilsky regions in the Urals. Works of the Geological Committee. New series. 1913. N 62. 692 p. (in Russian).
  24. Zavaritskiy A. N. Bedrock platinum deposits in Ural. Leningrad: Geological Committee, 1928. 56 p. (in Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Idiomorphism of chrome-spinel (Chr) regarding isoferroplatinum (Pt3Fe). Veresovoborsky massif.

Download (76KB)
3. Fig. 2. Coexistence of idiomorphous and xenomorphous segregations of platinum inside chrome-spinel (after Betekhtin, 1935).

Download (65KB)
4. Fig. 3. Segregation of isoferroplatinum filling the cavity shaped as a negative crystal inside the idiomorphous chrome-spinel crystal. Veresovoborsky massif.

Download (38KB)
5. Fig. 4. Crystal of osmium-iron-platinum solid solution (Pt3Fe) with the lattice-like exsolution structure (?) that is idiomorphous regarding to chrome-spinel. Veresovoborsky massif.

Download (57KB)
6. Fig. 5. Induction faces (?) between individuals of isoferroplatinum and chrome-spinel. Iov dunite body, Konzakovsky massif.

Download (46KB)
7. Fig. 6. Lamellar native osmium crystals (Os,Ir) formed inclusion into idiomorphous chrome-spinel crystal (а) and placed between chrome-spinel crystals (б). Veresovoborsky massif.

Download (50KB)
8. Fig. 7. Native osmium crystals occurring partly in isoferroplatinum (a) and chrome-spinel with predominant growth toward isoferroplatinum (б). Chromitites of the Veresovoborsky (а) and Kamenushensky massifs (б).

Download (56KB)
9. Fig. 8. Confinedness of lamellar osmium crystals to boundaries between isoferroplatinum and chrome-spinel segregations. Nizhnetagilsky massif, photo in reflected light (а), Kamenushensky massif, BSE image.

Download (65KB)
10. Fig. 9. Skeleton osmium crystals inside isoferroplatinum. Veresovoborsky massif (а), Kamenushensky massif (б).

Download (70KB)
11. Fig. 10. Isoferroplatinum fragment shaped as negative crystal into skeleton native osmium crystal.

Download (54KB)
12. Fig. 11. Segregations of native iridium (Ir,Os) into isoferroplatinum. а — isoferroplatinum fragments into native iridium, б — iridium segregations overgrowing on skeleton osmium crystals. Kamenushensky massif.

Download (72KB)
13. Fig. 12. Crystal of laurite (Lr) into isoferroplatinum with its captured fragment (а), xenomorphism of laurite crystals regarding to chrome-spinel and idiomorphism of them relatively to native iridium (б). Kamenushensky massif.

Download (80KB)
14. Fig. 13. Displacement of osmium crystals in the process of the plastic deformation of isoferroplatinum. Veresovoborsky massif.

Download (41KB)
15. Fig. 14. Curved lamellar osmium crystal into tetraferroplatinum (PtFe) pseudomorphically replacing isoferroplatinum (а — without analyzer, б — with analyzer). Veresovoborsky massif.

Download (52KB)
16. Fig. 15. Lamellar osmium crystal which has suffered fragile deformation in tulameenite (Tul) pseudomorphically replacing isoferroplatinum (а — without analyzer, б — with analyzer).

Download (76KB)
17. Fig. 16. Traces of isoferroplatinum squeezing into fractures of chrome-spinel crystals.

Download (32KB)

Copyright (c) 2019 Russian academy of sciences