Side effects of vaccination against COVID-19: description of a case of isolated oculomotor nerve damage with a literature review

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In the era of the COVID-19 pandemic, unprecedented efforts have been made by governments and the scientific community to develop vaccines. Vaccines developed on the basis of new technologies have proven to be effective and safe. The accumulated experience in vaccine development on the basis of human adenovirus DNA has allowed domestic scientists to develop and launch the world’s first vaccine against a new coronavirus infection, Sputnik V, in a short period of time, which has received worldwide recognition. Pre-registration trials may be insufficient to detect rare post-vaccination complications, and the lack of information about them may cause distrust in vaccination companies among part of the population. A review of the worldwide literature on SARS-CoV-2 vaccine-related complications is presented. It concludes that vaccination is superior to their risks. An oculomotor nerve injury following vaccination with Sputnik Lite in a 67-year-old woman with a favourable outcome is described.

Full Text

Restricted Access

About the authors

Rustem T. Gaifutdinov

Kazan State Medical University

Author for correspondence.
Email: Gaifutdinov69@mail.ru
ORCID iD: 0000-0001-5591-7148
SPIN-code: 2788-1954

Cand. Sci. (Med.), Associate Professor

Russian Federation, 420012, Kazan, Butlerova St., 49

Dinara Sh. Kamalova

Kazan State Medical University

Email: di-bang@yandex.ru
ORCID iD: 0000-0002-3123-9546
SPIN-code: 2440-1770

resident doctor

Russian Federation, 420012, Kazan, Butlerova St., 49

References

  1. Manzo C, Natale M, Castagna A. Polymyalgia rheumatica as uncommon adverse event following immunization with COVID-19 vaccine: A case report and review of literature. Aging Med (Milton). 2021;4(3):234–238. doi: 10.1002/agm2.12171.
  2. Sputnik V. Vikipediya [Sputnik V. Wikipedia]. https://ru.wikipedia.org/wiki/Спутник_V (access date: 25.12.2021). (In Russ.)
  3. Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and future challenges. Nat Rev Immunol. 2021;21(4):195–197. doi: 10.1038/s41577-021-00526-x.
  4. Nogrady B. Mounting evidence suggests Sputnik COVID vaccine is safe and effective. Nature. 2021;595(7867):339–340. doi: 10.1038/d41586-021-01813-2.
  5. Hervé C, Laupèze B, Del Giudice G et al. The how’s and what’s of vaccine reactogenicity. NPJ Vaccines. 2019;4(39):1–11. doi: 10.1038/s41541-019-0132-6.
  6. Koenig HC, Sutherland A, Izurieta HS, McGonagle D. Application of the immunological disease continuum to study autoimmune and other inflammatory events after vaccination. Vaccine. 2021;29(5):913–919. doi: 10.1016/j.vaccine.2010.10.044.
  7. Bellavite P. Causality assessment of adverse events following immunization: the problem of multifactorial pathology. F1000Res. 2020; 9:170. doi: 10.12688/f1000research.22600.2.
  8. Watad A, De Marco G, Mahajna H et al. Immune-mediated disease flares or new-onset disease in 27 subjects following mRNA/DNA SARS-CoV-2 vaccination. Vaccines (Basel). 2021;29(9(5)):435. doi: 10.3390/vaccines9050435.
  9. Chandler RE. Optimizing safety surveillance for COVID-19 vaccines. Nat Rev Immunol. 2020;20(8):451–452. doi: 10.1038/s41577-020-0372-8.
  10. Wang MW, Wen W, Wang N et al. COVID-19 vaccination acceptance among healthcare workers and non-healthcare workers in China: A survey. Front Public Health. 2021;9:709056. doi: 10.3389/fpubh.2021.709056.
  11. Giannotta G, Giannotta N. Vaccines and neuroinflammation. Int J Pub Health Safe. 2018;3:163.
  12. Definition and application of terms for vaccine pharmacovigilance report of CIOMS/WHO Working Group on vaccine pharmacovigilance. http://www.who.int/vaccine_safety/initiative/tools/CIOMS_report_WG_vaccine.pdf (access date: 25.12.2022).
  13. Metodicheskie rekomendacii po vyyavleniyu, rassledovaniyu i profilaktike pobochnyh proyavlenij posle immunizacii, utverzhdennye (utverzhdennye Minzdravom Rossii ot 12.04.2019). [Methodical recommendations for the detection, investigation and prevention of adverse events after immunization, approved (approved by the Ministry of Health of Russia from 12.04.2019).] http://gbgm.moscow › uploads›2019/09›Мето (access date: 31.01.2022). (In Russ.)
  14. Instrukciya po primeneniyu lekarstvennogo preparata Gam-KOVID-Vak. (Instructions for use of the drug Gam-Covid-Vac.) https://roszdravnadzor.gov.ru (access date: 03.02.2022). (In Russ.)
  15. Vremennye metodicheskie rekomendacii. Poryadok provedeniya vakcinacii vzroslogo naseleniya protiv COVID-19. [Temporary methodological recommendations. Procedure for vaccination of adult population against COVID-19.] https://rmapo.ru/uploads/korona/vakcinaciya.pdf (access date: 31.01.2022). (In Russ.)
  16. Patone M, Handunnetthi L, Saatci D et al. Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection. Nat Med. 2021;27(12):2144–2153. doi: 10.1038/s41591-021-01556-7.
  17. Campaña Nacional de Vacunación contra la COVID-19. 15.°Informe de vigilancia de seguridad en vacunas. Octubre de 2021. Available at: https://www.argentina.gob.ar/coronavirus/vacuna/equipos-salud/informes-seguridad (access date: 20.12.2021).
  18. Amanzio M, Mitsikostas DD, Giovannelli F et al. Adverse events of active and placebo groups in SARS-CoV-2 vaccine randomized trials: A systematic review. The Lancet Regional Health. Europe, 12, 100253. Open access published: October 28, 2021. doi: 10.1016/j.lanepe.2021.100253.
  19. Pottegård A, Lund LC, Karlstad Ø et al. Arterial events, venous thromboembolism, thrombocytopenia, and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: population based cohort study. BMJ. 2021;373:1114. doi: 10.1136/bmj.n1114.
  20. Vakcina AstraZeneca protiv COVID-19 — Vikipediya.[AstraZeneca vaccine against COVID-19. Wikipedia.] https://ru.wikipedia.org›wiki›Вакцина_AstraZeneca (дата обращения: 08.01.2022). (In Russ.)
  21. Lau CL, Galea I. Risk-benefit analysis of COVID-19 vaccines — a neurological perspective. Nat Rev Neurol. 2021;20:1–2. doi: 10.1038/s41582-021-00606-5.
  22. Palaiodimou L, Stefanou MI, Katsanos AH et al. Cerebral venous sinus thrombosis and thrombotic events after vector-based COVID-19 vaccines: A systematic review and meta-analysis. Neurology. 2021;97(21):2136–2147. doi: 10.1212/WNL.0000000000012896.
  23. Finsterer J. Neurological side effects of SARS-CoV-2 vaccinations. Acta Neurol Scand. 2021;145:5–9. doi: 10.1111/ane.13550.
  24. Garg RK, Paliwal VK. Spectrum of neurological complications following COVID-19 vaccination. Neurol Sci. 2022;43(1):3–40. doi: 10.1007/s10072-021-05662-9.
  25. Zuhorn F, Graf T, Klingebiel R et al. Postvaccinal encephalitis after ChAdOx1 nCov-19. Ann Neurol. 2021;90(3):506–511. doi: 10.1002/ana.26182.
  26. Rizk JG, Gupta A, Sardar P et al. Clinical characteristics and pharmacological management of COVID-19 vaccine-induced immune thrombotic thrombocytopenia with cerebral venous sinus thrombosis: A review. JAMA Cardiol. 2021;6(12):1451–1460. doi: 10.1001/jamacardio.2021.3444.
  27. Reyes-Capo DP, Stevens SM, Cavuoto KM. Acute abducens nerve palsy following COVID-19 vaccination. J AAPOS. 2021;25(5):302–303. doi: 10.1016/j.jaapos.2021.05.003.
  28. Kubota T, Hasegawa T, Ikeda K, Aoki M. Case report: Isolated, unilateral oculomotor palsy with anti-GQ1b antibody following COVID-19 vaccination. F1000Research. 2021;10:1142. doi: 10.12688/f1000research.74299.1.
  29. Graus F, Titulaer MJ, Balu R et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016;15(4):391–404. doi: 10.1016/S1474-4422(15)00401-9.
  30. Manea MM, Dragoș D, Enache I et al. Multiple cranial nerve palsies following COVID-19 vaccination-Case repor. Acta Neurol Scand. 2022;145(2):257–259. doi: 10.1111/ane.13548.
  31. McGonagle D, De Marco G, Bridgewood C. Mechanisms of immunothrombosis in Vaccine-Induced Thrombotic Thrombocytopenia (VITT) compared to natural SARS-CoV-2 infection. J Autoimmun. 2021;121:102662. doi: 10.1016/j.jaut.2021.102662.
  32. Steadman E, Fandaros M, Yin W. SARS-CoV-2 and Plasma Hypercoagulability. Cell Mol Bioeng. 2021;14(5):1–10. doi: 10.1007/s12195-021-00685-w.
  33. Adam M, Gameraddin M, Alelyani M et al. Evaluation of post-vaccination symptoms of two common COVID-19 vaccines used in Abha, Aseer Region, Kingdom of Saudi Arabia. Patient Prefer Adherence. 2021;15:1963–1970. doi: 10.2147/PPA.S330689.
  34. Golubev VL, Vejn AM. Neurological syndromes. A guide for physicians. Moscow: Ejdos Media; 2002. 832 р. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1

Download (439KB)
3. Fig. 2

Download (201KB)
4. Fig. 3

Download (321KB)

Copyright (c) 2022 Gaifutdinov R.T., Kamalova D.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 75562 от 12 апреля 2019 года.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies