Risk Factors for Auditory-Verbal and Visual-Spatial Memory Impairments in Patients with Ischemic Stroke

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

INTRODUCTION.: Auditory-verbal and visual-spatial memory impairments, which significantly impact patients' daily functioning, may potentially suggest acute ischemic stroke. However, these impairments are not always recognized by medical professionals at vascular centers. The early detection of significant memory impairments can be facilitated by identifying the factors that increase the probability of detecting such impairments in patients with acute ischemic stroke.

AIM: To identify the risk factors associated with significant memory impairments, both auditory-verbal and visual-spatial, in the acute phase of ischemic stroke.

METHODS: The study included a comprehensive neurological, physical, and neuropsychological assessment of 50 patients aged 55 to 89 years (22 females and 28 males, with a mean age of 68.8 ± 8.0 years) who had been diagnosed with acute ischemic stroke. The assessment findings were used to diagnose significant and non-significant auditory-verbal and visual-spatial memory impairments and to elucidate potential risk factors. The statistical data processing was performed using the IBM SPSS Statistics 27 program for Windows.

RESULTS: The risk factors for significant auditory-verbal memory impairment in patients with acute ischemic stroke were anterior stroke (odds ratio (OR) = 5.4; 95% confidence interval (CI), 1.5–18.6; p = 0.0043), large ischemic lesions (OR = 11.0; 95% CI, 2.7–44.5; р = 0.0002), atrial fibrillation (OR = 14.3; 95% CI, 1.5–130.7; p = 0.0018), and the level of education lower than higher professional (OR = 6.5; 95% CI, 1.6–25.5; p = 0.0032). The risk factors for significant visual-spatial memory impairment in the acute phase of ischemic stroke included posterior brain ischemia (OR = 4,1; 95% CI, 1,1–16,1; р = 0,0304), and large ischemic lesions (OR = 4.3; 95% CI, 1.1–16.9; p = 0.0227). A moderate correlation was identified between Frontal Assessment Battery scores and auditory-verbal (correlation coefficient r = 0.52) and visual-spatial (r = 0.47) memory scores.

CONCLUSION: Location and size of the ischemiс lesions have been identified as common risk factors for significant auditory-verbal and visual-spatial memory impairments in patients with acute ischemic stroke. The probability of significant auditory-verbal memory impairments is also influenced by the level of patient's eduction and atrial fibrillation. The auditory-verbal and visual-spatial memory in the acute period of ischemic stroke is moderately associated with the regulatory functions.

Full Text

Restricted Access

About the authors

Dmitrii I. Sundukov

Privolzhsky Research Medical University

Author for correspondence.
Email: dmitrij.sundukov@gmail.com
ORCID iD: 0000-0003-2349-1503
SPIN-code: 2475-7711

Post-graduate student, Assistant at the Department of Nervous Diseases

Russian Federation, 10/1 Minin and Pozharsky sq, Nizhny Novgorod, 603005

Vera N. Grigoryeva

Privolzhsky Research Medical University

Email: vrgr@yandex.ru
ORCID iD: 0000-0002-6256-3429
SPIN-code: 3412-5653

MD, Professor, Head of the Department of Nervous Diseases

Russian Federation, 10/1 Minin and Pozharsky sq, Nizhny Novgorod, 603005

Daria A. Pavlova

Privolzhsky Research Medical University

Email: dariya.pavlova.02@mail.ru
ORCID iD: 0009-0000-2665-9637

fifth-year student of the Faculty of Medicine

Russian Federation, 10/1 Minin and Pozharsky sq, Nizhny Novgorod, 603005

Ivan Nikolaevich Vaneev

Privolzhsky Research Medical University

Email: ivan.vaneev2002@yandex.ru
ORCID iD: 0009-0005-7693-0452

fifth-year student of the Faculty of Medicine

Russian Federation, 10/1 Minin and Pozharsky sq, Nizhny Novgorod, 603005

References

  1. Shamalov NA, Stakhovskaya LV, Klochihina OA, et al. An analysis of the dynamics of the main types of stroke and pathogenetic variants of ischemic stroke. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(3–2):5–10. EDN: GGICQC doi: 10.17116/jnevro20191190325
  2. Puzin SN, Yakovlev AA, Lyalina IV, et al. Primary disability of the adult population due to diseases of the circulatory system. Siberian Journal of Life Sciences and Agriculture. 2021;13(5):205–225. EDN: KACLCA doi: 10.12731/2658-6649-2021-13-5-205-225
  3. Levin OS, Bogolepova AN. Poststroke motor and cognitive impairments: clinical features and current approaches to rehabilitation. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(11):99–107. EDN: VZORCZ doi: 10.17116/jnevro202012011199
  4. Damulina AI, Konovalov RN, Kadykov AS. Poststroke cognitive impairments. Nevrologicheskiy Zhurnal. 2015;20(1):12–19. EDN: TSJGEX
  5. Lugtmeijer S, Lammers NA, de Haan EHF, et al. Post-stroke working memory dysfunction: a meta-analysis and systematic review. Neuropsychol Rev. 2021;31(1):202–219. doi: 10.1007/s11065-020-09462-4
  6. O'Sullivan MJ, Li X, Galligan D, Pendlebury ST. Cognitive recovery after stroke: memory. Stroke. 2023;54(1):44–54. doi: 10.1161/STROKEAHA.122.041497
  7. Katayeva NG, Kornetov NA, Karavayeva EV, et al. Impairments after stroke. Neurology, Neuropsychiatry, Psychosomatics. 2010;(1):37–41. EDN: MBWSEH
  8. Seo EH, Lim HJ, Yoon HJ, et al. Visuospatial memory impairment as a potential neurocognitive marker to predict tau pathology in Alzheimer's continuum. Alzheimers Res Ther. 2021;13(1):167. doi: 10.1186/s13195-021-00909-1
  9. McAfoose J, Baune BT. Exploring visual-spatial working memory: a critical review of concepts and models. Neuropsychol Rev. 2009;19(1):130–42. doi: 10.1007/s11065-008-9063-0
  10. Zakharov VV, Vakhnina NV. Stroke and cognitive disorders. Neurology, Neuropsychiatry, Psychosomatics. 2011;(2):8–16. EDN: NUSGMP
  11. Damulin IV. Cognitive disorders of vascular genesis: pathogenetic, clinical and therapeutic aspects. Nervous Diseases. 2012;11(4):14–20. (In Russ.) EDN: PVTJLT
  12. Lim JS, Noh M, Kim BJ, et al. A methodological perspective on the longitudinal cognitive change after stroke. Dement Geriatr Cogn Disord. 2017;44(5–6):311–319. doi: 10.1159/000484477
  13. Zhao X, Chong EJY, Qi W, et al. Domain-specific cognitive trajectories among patients with minor stroke or transient ischemic attack in a 6-year prospective asian cohort: serial patterns and indicators. J Alzheimers Dis. 2021;83(2):557–568. doi: 10.3233/JAD-210619
  14. Al-Qazzaz N, Ali S, Ahmad SA, et al. Cognitive impairment and memory dysfunction after a stroke diagnosis: a post-stroke memory assessment. Neuropsychiatr Dis Treat. 2014;10:1677–1691. doi: 10.2147/NDT.S67184
  15. Levine DA, Haan MN, Langa KM, et al. Impact of gender and blood pressure on poststroke cognitive decline among older latinos. J Stroke Cerebrovasc Dis. 2013;22(7):1038–1045. doi: 10.1016/j.jstrokecerebrovasdis.2012.05.004
  16. Levine DA, Wadley VG, Langa KM, et al. Risk factors for poststroke cognitive decline: the REGARDS study (reasons for geographic and racial differences in stroke). Stroke. 2018;49(4):987–994. doi: 10.1161/STROKEAHA.117.018529
  17. Varako NA, Arkhipova DV, Kovyazina MS, et al. The Addenbrooke’s cognitive examination III (ACE-III): linguistic and cultural adaptation into Russian. Annals of Clinical and Experimental Neurology. 2022;16(1):53–58. doi: 10.54101/ACEN.2022.1.7
  18. Poreh A, Levin JB, Teaford M. Geriatric complex figure test: a test for the assessment of planning, visual spatial ability, and memory in older adults. Appl Neuropsychol Adult. 2020;27(2):101–107. doi: 10.1080/23279095.2018.1490288
  19. Bogolepova AN, Vasenina EE, Gomzyakova NA, et al. Clinical guidelines for cognitive disorders in elderly and older patients. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(10–3):6–137. EDN: MPUDYF doi: 10.17116/jnevro20211211036
  20. Siciliano M, Raimo S, Tufano D, et al. The Addenbrooke's cognitive examination revised (ACE-R) and its sub-scores: normative values in an Italian population sample. Neurol Sci. 2016;37(3):385–392. doi: 10.1007/s10072-015-2410-z
  21. Bajpai S, Upadhyay A, Sati H, et al. Hindi version of Addenbrooke's cognitive examination III: distinguishing cognitive impairment among older indians at the lower cut-offs. Clin Interv Aging. 2020;15:329–339. doi: 10.2147/CIA.S244707
  22. Russell C, Deidda C, Malhotra P, et al. A deficit of spatial remapping in constructional apraxia after right-hemisphere stroke. Brain. 2010;133(Pt 4):1239–1251. doi: 10.1093/brain/awq052
  23. Koçer A. Cognitive problems related to vertebrobasilar circulation. Turk J Med Sci. 2015;45(5):993–997. doi: 10.3906/sag-1403-100
  24. Moore MJ, Demeyere N. Lesion symptom mapping of domain-specific cognitive impairments using routine imaging in stroke. Neuropsychologia. 2022;167:108159. doi: 10.1016/j.neuropsychologia.2022.108159
  25. Spellman T, Rigotti M, Ahmari SE, et al. Hippocampal-prefrontal input supports spatial encoding in working memory. Nature. 2015;522(7556):309–314. doi: 10.1038/nature14445
  26. Roth RW, Schwen Blackett D, Gleichgerrcht E, et al. Long-range white matter fibres and post-stroke verbal and non-verbal cognition. Brain Commun. 2024;6(4):fcae262. doi: 10.1093/braincomms/fcae262
  27. Velasco Gonzalez A, Sauerland C, Görlich D, et al. Exploring the relationship between embolic acute stroke distribution and supra-aortic vessel patency: key findings from an in vitro model study. Stroke Vasc Neurol. 2024. doi: 10.1136/svn-2023-003024
  28. Damulin IV, Andreev DA, Salpagarova ZK. Cardioembolic stroke. Neurology, Neuropsychiatry, Psychosomatics. 2015;7(1):80–86. EDN: TMHNUX
  29. Filler J, Georgakis MK, Dichgans M. Risk factors for cognitive impairment and dementia after stroke: a systematic review and meta-analysis. Lancet Healthy Longev. 2024;5(1):e31-e44. doi: 10.1016/S2666-7568(23)00217-9
  30. Kovalenko EA, Bogolepova AN. Post-stroke cognitive decline: the main features and risk factors. Consilium Medicum. 2017;19(2):14–18. EDN: ZEPYCT
  31. Staff RT, Hogan MJ, Whalley LJ. The influence of childhood intelligence, social class, education and social mobility on memory and memory decline in late life. Age Ageing. 2018;47(6):847–852. doi: 10.1093/ageing/afy111
  32. Murphy CFB, Rabelo CM, Silagi ML, et al. Impact of educational level on performance on auditory processing tests. Front. Neurosci. 2016;10:97. doi: 10.3389/fnins.2016.00097
  33. Baddeley A. Working memory: theories, models, and controversies. Annu Rev Psychol. 2012;63:1–29. doi: 10.1146/annurev-psych-120710-100422

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 75562 от 12 апреля 2019 года.