Biological effects of buckwheat flavonoids


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Buckwheat flavonoids are represented by a wide range of biologically active substances of polyphenolic nature. Rutin and buckwheat anthocyanins have the greatest biological activity. Purpose of the study. Evaluation of the biological effects of the polyphenolic complex of buckwheat. Material and methods. Rutin, anthocyanins, a preparation of polyphenolic nature isolated from flowers and vegetative mass of buckwheat were used as objects of research. Sensitivity to antibiotic drugs and the minimum inhibitory concentration were determined by the disco-diffusion method and the method of serial dilutions. Osmotic resistance of E. coli was evaluated densitometrically with varying concentrations of NaCl. Adhesive activity was determined by the number of bacterial cells attached to erythrocytes. The activity of β-galactosidase was determined by the change in optical density at a wavelength of 405 nm. Protease activity was analyzed by incubating a biomaterial with trichloroacetic acid, followed by the calculation of activity according to the calibration curve with tyrosine. The activity of the superoxide dismutase enzyme was determined by spectrophotometry at a wavelength of 550 nm, and the activity of catalase at a wavelength of 240 nm. The carbohydrate content was determined by reaction with phenol in the presence of sulfuric acid at a wavelength of 440 nm. The quantitative content of reducing substances was determined by Veshnyakov. The peptone content was quantified by reaction with a biuretic reagent. The total protein content in the biomass was determined by Bradford. Protein analysis by electrophoresis in polyacrylamide gel under denaturing conditions. Results. A study of the antibiotic activity of buckwheat flavonoids and preparations based on them was conducted, the minimum concentrations of rutin and anthocyanins from buckwheat flowers were established - 6.13 and 2.62 mcg/ml, respectively, which inhibit the growth of E. coli bacteria ATCC 25922. When co-incubating β-lactam antibiotics with buckwheat flavonoids, it was found that the active components rutin from flowers and anthocyanins from the vegetative mass of buckwheat reduce the minimum inhibitory concentration of amoxicillin by an average of 34-36%, meropenem by 20-22%, cefazolin by 16-18%. According to the results of the study of the effect of buckwheat flavonoids on osmotic resistance and adhesion of E. coli, it was shown that rutin from buckwheat flowers caused an effective decrease in these indicators. The activity indicators of E. coli peptone utilization, as well as the specific activity of proteases decreased under the action of rutin and anthocyanins. Phenolic compounds - rutin and anthocyanins contribute to a decrease in the utilization of carbohydrate components and the specific activity of jS-galactosidase during co-incubation with isolate E. coli. Anthocyanins from the vegetative mass of buckwheat have antioxidant activity, causing a significant increase in the activity of superoxide dismutase and catalase. Conclusions. When studying the biological properties of buckwheat flavonoids, the specificity of the action of their component composition was established. The most active compounds of the polyphenolic complex of buckwheat have been identified - rutin from flowers and anthocyanins from vegetative mass, which have bacteriostatic activity against E.coli, due to prooxidant action and violation of the integrity of the bacterial cell wall. In addition, rutin and anthocyanins exhibit a weak bacteriostatic effect against phytopathogenic pathogens. Buckwheat anthocyanins, inducing oxidative stress, subsequently cause a violation of the integrity of E. coli DNA. Compounds of the phenolic complex of buckwheat with pronounced biological activity can be recommended as components for the creation of antiseptic solutions for external use.

Full Text

Restricted Access

About the authors

I. A. Gneusheva

Oryol State Agrarian University named after N.V. Parakhin

Email: obc1-2010@mail.ru

Ph.D. (Eng.), Associate Professor, Departmant of Biotechnology

Russian Federation,

I. Yu. Solokhina

Oryol State Agrarian University named after N.V. Parakhin

Email: solohinairina@yandex.ru

Ph.D. (Biol.), Associate Professor, Departmant of Biotechnology

Russian Federation,

A. V. Lushnikov

Oryol State Agrarian University named after N.V. Parakhin

Author for correspondence.
Email: alex_de-vil@mail.ru

Chief Specialist, Center for Collective Use "Oryol Regional Center for Agricultural Biotechnology"

Russian Federation,

References

  1. Солёнова Е.А., Николаевна Величковска Л.Н. Флавоноиды. Перспективы применения в антимикробной терапии. Acta medica Eurasica. 2017; 3: 50-57.
  2. Запрометов М.Н. Фенольные соединения: распространение, метаболизм и функции в растениях. М.: 1993; 119 с.
  3. Тараховский Ю.С., Ким Ю.А., Абдрасилов Б.С., Муфазаров Е.Н. Флавоноиды: биохимия, биофизика, медицины. Пущино: Synchrobook, 2013; 310 с.
  4. Kinoshita T., Lepp Z., Kawai Y., et al. An intergrated database of flavonoids. Biofactors. 2006; 26(3): 179-188.
  5. Тутельян В.А., Батурин А.К., Мартинчик ЭА. Флавоноиды: содержание в пищевых продуктах, уровень потребления, биодоступность. Вопросы питания. 2004; 73(6): 43-48.
  6. Кравченко Л.В., Морозов С.В., Авреньева Л.И. Оценка антиоксидантной и антитоксической эффективности природного флавоноида дигидрокверцетина. Токсикологический вестник. 2005; 1: 14-15.
  7. Шульпекова Ю.О. Флавоноиды расторопши пятнистой в лечении заболеваний печени. Русский медицинский журнал. 2004; 12(5): 248-250.
  8. Азарова О.В., Галактионова Л.П. Флавоноиды: механизм противовоспалительного действия. Химия растительного сырья. 2012; 4: 61-78.
  9. Евстропов А.Н., Бурова А.Г., Орловская И.А. и др. Противоэнтеровирусная и иммуностимулирующая активность полифенольного комплекса, экстрагированного из пятилистника кустарникового (Penthaphylloides fruticosa L.). Вопросы вирусологии. 2004; 49(6): 30-33.
  10. Perez-Vizcaino F., Duarte J., Andriantsitohaina R. Endothelial function and cardiovascular disease: Effect of quercetin and wine polyphenols. Free Radic Res. 2006; 40(10): 1054-1065.
  11. Aqil F., Ahmad I., Owais M. Evalition of anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and synergy of some bioactive plant extracts. Biotechnjl. J. 2006; 1(10): 1093-1102.
  12. Дейнека В.И., Хлебников В.А., Чулков А.Н., Дейнека Л.А., Перистый В.А., Сорокопудов В.Н. Антоцианы и алкалоиды: особенности сорбции природными глинистыми минералами. Химия растительного сырья. 2007; 2: 63-66.
  13. Дейнека В.И., Макаревич С.Л., Дейнека Л.А. и др. Антоцианы плодов некоторых видов боярышника (Crataegus L. Rosaceae). Химия растительного сырья. 2014; 1: 119-124.
  14. Писарев Д.И., Новиков О.О., Селютин О.А., Писарева Н.А. Биологическая активность полифенолов растительного происхождения перспектива использования антоцианов в медицинской практике. Научные ведомости. Серия Медицина. Фармация. 2012; 10(129): 17-22.
  15. Гнеушева И.А., Солохина И.Ю. Оценка антифунгальных и ростостимулирующих свойств биопрепаратов на основе природных компонентов. Вестник ИрГСХА. 2020; 99: 31-39.
  16. Определение чувствительности микроорганизмов к антибактериальным препаратам: Методические указания. МУК 4.2.1890-04. М.: Федеральный центр госсанэпиднадзора Минздрава России, 2004; 91 с.
  17. Брилис В.И., Брилене Т.А., Ленцнер Х.П., Ленцнер А.А. Методика изучения адгезивного процесса микроорганизмов. Лабораторное дело. 1986; 4: 210-212.
  18. Craven G.R., Steers E. (Jr.), Anfinsen C.B. Purification, composition and molecular weight of the B-galactosidase E. coli K. - 12. J. Biol. Chem. 1965; 240(6): 2468-2477.
  19. Anson M.L. The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. J. Gen Physiol. 1938; 22(1): 79-89.
  20. McCord J.M. Superoxide dismutase. The J. of Biol. Chem. 1969; 244(22): 6049-6055.
  21. Beers R.F. (Jr.), Sizer I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952; 195(1): 133-140.
  22. Dubois M., Gilles K., Hamilton J., Rebers P.A., Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956; 28(2): 350-356.
  23. Вешняков В.А., Хабаров Ю.Г., Камакина Н.Д. Сравнение методов определения редуцирующих веществ: метод Бертрана, эбулиостатический и фотометрический методы. Химия растительного сырья. 2008; 4: 47-50.
  24. Bradford M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976; 72: 248-254.
  25. Методы контроля бактериологических питательных сред: Методические указания. МУК 4.2.2316-08. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора. 2008; 67 с.
  26. Laemmli U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 1970; 227: 680-685.
  27. Гнеушева И.А. Павловская Н.Е., Лушников А.В. Антибактериальные эффекты БАВ различного происхождения и их сочетанного действия с некоторыми Р-лактамными антибиотиками. Ветеринария, зоотехния и биотехнология. 2019; 1: 52-59. doi: 10.26155/vet.zoo.bio.20l90l008.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1

Download (78KB)
3. Fig. 2

Download (57KB)
4. Fig. 3

Download (101KB)
5. Fig. 4

Download (80KB)
6. Fig. 5

Download (111KB)
7. Fig. 6

Download (74KB)
8. Fig. 7

Download (38KB)
9. Fig. 8

Download (59KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies