Chemometric approach to investigation of the role of adipose tissue as a target for toxic metal effects


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The objective of the present study was to assess toxic metal content in human adipose tissue and evaluate patterns of toxic and essential trace element accumulation in adipose tissue compared to liver.

Material and methods. The samples of right-sided pararenal adipose tissue and right lobe of the liver were obtained from autopsy of 28 patients aged from 33 to 63 years old who died from complications of cardiovascular diseases.

Results. Assessment of toxic and essential element levels was performed using inductively-coupled plasma mass spectrometry. The obtained data demonstrate comparable levels of toxic metals in adipose tissue and liver. Specifically, no significant group difference in aluminium and arsenic content was observed between liver and adipose tissue. Lead and tin content in adipose tissue was 23% and 46% lower than that in liver, respectively. At the same time, the levels of cadmium and mercury in liver exceeded the respective values in adipose tissue by a factor of 2.6 and 4.5. In view of manyfold differences in total protein levels in adipose tissue and liver, toxic metal accumulation in adipocyte cytoplasm far exceeds that in hepatocytes.

Conclusion. Therefore, the obtained data demonstrate that adipose tissue may be considered as a target for toxic metal effects, thus underlying the epidemiological association between toxic metal exposure and obesity prevalence.

Full Text

Restricted Access

About the authors

A. V. Skalny

Sechenov University; RUDN University

Author for correspondence.
Email: skalny3@microelements.ru

Dr.Sc. (Med.), Professor, Director of the Center for Bioelementology and Human Ecology; Head of Department of Medical Elementology

Russian Federation, Moscow; Moscow

V. N. Nikolenko

Sechenov University; Moscow State University

Email: nikolenko_v_n@staff.sechenov.ru

Dr.Sc. (Med.), Professor, Head of Department of Human Anatomy; Head of Department General and Topographic Anatomy

Russian Federation, Moscow; Moscow

T. Kh. Fatkhudinov

RUDN University; Research Institute of Human Morphology

Email: tfat@yandex.ru

Dr.Sc. (Med.), Head of Department of Histology, Cytology and Embryolog, Institute of Medicine; Director for Scientific Development

Russian Federation, Moscow; Moscow

Jung-Su Chang

Taipei Medical University

Email: susanchang@tmu.edu.tw

PhD, Professor

Taiwan, Province of China, Taipei

G. D. Morozova

Sechenov University; Golikov Research Center of Toxicology

Email: morozova0826@gmail.com

Laboratory Assistant, Laboratory of Molecular Nutrition; Junior Research Scientist

Russian Federation, Moscow; Saint-Petersburg

G. V. Zolotenkova

Sechenov University; State Budgetary Healthcare Institution of Moscow Bureau of SME

Email: zolotenkova_g_v@staff.sechenov.ru

Dr.Sc. (Med.), Professor, Department of Forensic Medicine; Doctor – Forensic Medical Expert

Russian Federation, Moscow; Moscow

Shih-Yi Huang

Taipei Medical University

Email: sihuang@tmu.edu.tw

PhD, Professor, Graduate Institute of Metabolism and Obesity Sciences)

Taiwan, Province of China, Taipei

A. A. Tinkov

Sechenov University; RUDN University

Email: tinkov.a.a@gmail.com

Dr.Sc. (Med.), Leading Research Scientist, Laboratory of Molecular Nutrition; Associate Professor, Department of Medical Elementology

Russian Federation, Moscow; Moscow

References

  1. Caballero B. Humans against Obesity: Who Will Win? Advanc-es in nutrition (Bethesda, Md.). 2019; 10(s1): 4–9. https://doi.org/10.1093/advances/nmy055
  2. Romieu I., Dossus L., Barquera S., Blottière H.M., Franks P.W., Gunter M., Hwalla N., Hursting S. D., Leitzmann M., Margetts B., Nishida C., Potischman N., Seidell J., Stepien M., Wang Y., Westerterp K., Winichagoon P., Wiseman M., Willett W. C. IARC working group on Energy Balance and Obesity. Energy balance and obesity: what are the main drivers? Cancer causes & control. 2017; 28(3): 247–258. https://doi.org/10.1007/s10552-017-0869-z
  3. Aaseth J., Javorac D., Djordjevic A. B., Bulat Z., Skalny A. V., Zaitseva I. P., Aschne, M., Tinkov, A. A. The Role of Persistent Organic Pollutants in Obesity: A Review of Laboratory and Ep-idemiological Studies. Toxics. 2022; 10(2): 65. https://doi.org/10.3390/toxics10020065
  4. Mohanto N.C., Ito Y., Kato S., Kamijima M. Life-Time Envi-ronmental Chemical Exposure and Obesity: Review of Epide-miological Studies Using Human Biomonitoring Methods. Front Endocrinol (Lausanne). 2021; 12: 778737. doi: 10.3389/fendo.2021.778737.
  5. Padilla M.A., Elobeid M., Ruden D.M., Allison D.B. An exami-nation of the association of selected toxic metals with total and central obesity indices: NHANES 99-02. International journal of environmental research and public health. 2010; 7(9): 3332–3347. https://doi.org/10.3390/ijerph7093332
  6. Skalnaya M.G., Skalny A.V., Grabeklis A.R., Serebryansky E.P., Demidov V.A., Tinkov A.A. Hair Trace Elements in Overweight and Obese Adults in Association with Metabolic Parameters. Biological trace element research. 2018; 186(1): 12–20. https://doi.org/10.1007/s12011-018-1282-5
  7. Duc H.N., Oh H., Kim M.S. The Effect of Mixture of Heavy Metals on Obesity in Individuals ≥50 Years of Age. Biological trace element research, 2022; 200(8): 3554–3571. https://doi.org/10.1007/s12011-021-02972-z
  8. Tinkov A.A., Aschner M., Ke T., Ferrer B., Zhou J.C., Chang J.S., Santamaría A., Chao J.C., Aaseth J., Skalny A.V. Adipo-tropic effects of heavy metals and their potential role in obesity. Faculty Reviews. 2021; 10: 32. https://doi.org/10.12703/r/10-32
  9. Freire C., Vrhovnik P., Fiket Ž., Salcedo-Bellido I., Echeverría R., Martín-Olmedo P., Kniewald G., Fernández M. F., Arrebola J. P. Adipose tissue concentrations of arsenic, nickel, lead, tin, and titanium in adults from GraMo cohort in Southern Spain: An exploratory study. The Science of the total environment. 2020; 719: 137458. https://doi.org/10.1016/j.scitotenv.2020.137458
  10. Echeverría R., Vrhovnik P., Salcedo-Bellido I., Iribarne-Durán L.M., Fiket Ž., Dolenec M., Martin-Olmedo P., Olea N., Arrebo-la J.P. Levels and determinants of adipose tissue cadmium con-centrations in an adult cohort from Southern Spain. The Science of the total environment. 2019; 670: 1028–1036. https://doi.org/10.1016/j.scitotenv.2019.03.114
  11. Malandrino P., Russo M., Ronchi A., Moretti F., Gianì, F., Vigneri P., Masucci R., Pellegriti G., Belfiore A., Vigneri R. Concentration of Metals and Trace Elements in the Normal Human and Rat Thyroid: Comparison with Muscle and Adipose Tissue and Volcanic Versus Control Areas. Thyroid. 2020; 30(2): 290–299. https://doi.org/10.1089/thy.2019.0244
  12. Liu L., Tao R., Huang J., He X., Qu L., Jin Y., Zhang S., Fu Z. Hepatic oxidative stress and inflammatory responses with cad-mium exposure in male mice. Environmental toxicology and pharmacology. 2015; 39(1): 229–236. https://doi.org/-10.1016/j.etap.2014.11.029
  13. Lin X., Gu Y., Zhou Q., Mao G., Zou B., Zhao J. Combined tox-icity of heavy metal mixtures in liver cells. Journal of applied toxicology. 2016; 36(9): 1163–1172. https://doi.org/-10.1002/jat.3283
  14. Kizalaite A., Brimiene V., Brimas G., Kiuberis J., Tautkus S., Zarkov A., Kareiva A. Determination of Trace Elements in Adi-pose Tissue of Obese People by Microwave-Assisted Digestion and Inductively Coupled Plasma Optical Emission Spectrome-try. Biological trace element research. 2019; 189(1): 10–17. https://doi.org/10.1007/s12011-018-1450-7
  15. Sawaya A.L., Lunn P.G. Increase in skeletal muscle protein con-tent by the ß-2 selective adrenergic agonist clenbuterol exacer-bates hypoalbuminemia in rats fed a low-protein diet. Brazilian journal of medical and biological research. 1998; 31: 819825.
  16. Stroh A.M., Lynch C.E., Lester B.E., Minchev K., Chambers T.L., Montenegro C.F., Chavez Martinez C., Fountain W.A., Trappe T.A., Trappe S.W. Human adipose and skeletal muscle tissue DNA, RNA, and protein content. Journal of applied phys-iology. 2021; 131(4): 1370–1379. https://doi.org/10.1152/japplphysiol.00343.2021
  17. Rahman M.M., Hossain K.F.B., Banik S., Sikder M.T., Akter M., Bondad S.E.C., Rahaman M. S., Hosokawa T., Saito T., Ku-rasaki M. Selenium and zinc protections against metal-(loids)-induced toxicity and disease manifestations: A review. Ecotoxi-cology and environmental safety. 2019; 168: 146–163. https://doi.org/10.1016/j.ecoenv.2018.10.054
  18. Rogers A. B., Dintzis R. Z. Hepatobiliary System. Editor(s): Piper M. Treuting, Suzanne M. Dintzis, Kathleen S. Montine, Com-parative Anatomy and Histology (Second Edition), Academic Press, 2018, 229-239, https://doi.org/10.1016/B978-0-12-802900-8.00013-0.
  19. Clarys J.P., Martin A.D., Drinkwater D.T. Gross tissue weights in the human body by cadaver dissection. Human biology. 1984; 56(3): 459–473.
  20. Tinkov A.A., Gatiatulina E.R., Popova E.V., Polyakova V.S., Skalnaya A.A., Agletdinov E.F., Nikonorov A.A., Skalny A.V. Early High-Fat Feeding Induces Alteration of Trace Element Content in Tissues of Juvenile Male Wistar Rats. Biological trace element research. 2017; 175(2): 367–374. https://doi.org/10.1007/s12011-016-0777-1
  21. Schoettl T., Fischer I.P., Ussar S. Heterogeneity of adipose tis-sue in development and metabolic function. The Journal of ex-perimental biology. 2018; 221(1): jeb162958. https://doi.org/10.1242/jeb.162958
  22. Rutkowski J.M., Davis K.E., Scherer P.E. Mechanisms of obesi-ty and related pathologies: the macro- and microcirculation of adipose tissue. The FEBS journal. 2009; 276(20): 5738–5746. https://doi.org/10.1111/j.1742-4658.2009.07303.x
  23. Kawakami T., Sugimoto H., Furuichi R., Kadota Y., Inoue M., Setsu K., Suzuki S., Sato M. Cadmium reduces adipocyte size and expression levels of adiponectin and Peg1/Mest in adipose tissue. Toxicology, 2010; 267(1-3): 20–26. https://doi.org/10.1016/j.tox.2009.07.022
  24. Kawakami T., Hanao N., Nishiyama K., Kadota Y., Inoue M., Sato M., Suzuki S. Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice. Toxicology and applied pharmacology. 2012; 258(1): 32–42. https://doi.org/10.1016/j.taap.-2011.10.004
  25. Rizzetti D.A., Corrales P., Piagette J.T., Uranga-Ocio J.A., Me-dina-Gomez G., Peçanha F.M., Vassallo D.V., Miguel M., Wig-gers G.A. Chronic mercury at low doses impairs white adipose tissue plasticity. Toxicology. 2019; 418: 41–50. https://doi.org/10.1016/j.tox.2019.02.013
  26. Klei L.R., Garciafigueroa D.Y., Barchowsky A. Arsenic activates endothelin-1 Gi protein-coupled receptor signaling to inhibit stem cell differentiation in adipogenesis. Toxicological sciences. 2013; 131(2): 512–520. https://doi.org/-10.1093/toxsci/kfs323
  27. Garciafigueroa D.Y., Klei L.R., Ambrosio F., Barchowsky A. Ar-senic-stimulated lipolysis and adipose remodeling is mediated by G-protein-coupled receptors. Toxicological sciences. 2013; 134(2): 335–344. https://doi.org/10.1093/toxsci/kft108
  28. Tinkov A.A., Ajsuvakova O.P., Skalnaya M.G., Skalny A.V., Aschner M., Suliburska J., Aaseth J. Organotins in obesity and associated metabolic disturbances. Journal of inorganic bio-chemistry, 2019; 191: 49–59. https://doi.org/10.1016/-j.jinorgbio.2018.11.002

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies