Selection and justification of drying in ocular insert development

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Relevance. This study describes aspects of drying in the development of ocular inserts, parameters affecting the kinetics of moisture loss by film-forming polymers of various nature, as well as features of the equipment used in the technological process.

Objective. The aim of the study is to develop methods for drying the basis of an innovative ocular medicinal insert intended for the treatment of bacterial infections.

Materials and methods. A film-forming agent of natural origin - hydroxyethylcellulose (Natrosol™ HHX 250, Ashland, USA) was used to prepare the polymer base. Glycerin (Tula Pharmaceutical Factory LLC, Russia) was added as a substance that gives the insert elasticity and plasticity, as well as an excipient that increases bioadhesion, poloxamer (Kolliphor® P 188, BASF, Germany). Purified water was used to dissolve the substances.

Placebo inserts were dried outdoors, in a dehydrator (Kitfort KT-1908, China), a thermostat (BINDER BD 56 Avantgarde.Line, Germany), freeze dryer (Harvest right, USA) and vacuum dryer (HETO CT/DW 60 E, Jouan, Gydevang, Denmark). The finished polymer base was evaluated according to the parameters humidity (gravimetric), bioadhesion (separation force), biodegradation time, thickness (micrometer) and elasticity.

Results and discussion. Drying of the bases turned out to be less prolonged in a dehydrator, in contrast to the technology carried out in a thermostat, freeze dryer and in an open space. Despite the increased drying time in a freeze dryer with a single mode, the parameters of the polymer base did not have significant differences, while ensuring the sterility of the process and the possibility of using an active pharmaceutical ingredient of different nature.

Conclusion. The selection of equipment for drying technology is carried out in accordance with the main parameters - ventilation, temperature constancy, humidity, vacuum, the possibility of carrying out the process in sterile conditions, and also the physico-thermal features of reducing the moisture of the dosage form are taken into account. The optimal ratio of drying parameters provides a polymer base at the output, which has certain physical properties that characterize the quality indicators of the future drug in the form of an ocular insert.

全文:

受限制的访问

作者简介

A. Turaeva

State Education Institution of Higher Professional Training, First Sechenov Moscow State Medical University under Ministry of Health of the Russian Federation

编辑信件的主要联系方式.
Email: turaevanastasia@yandex.ru

Post-graduate Student, Department of Pharmaceutical Technology

俄罗斯联邦, Moscow

E. Bakhrushina

State Education Institution of Higher Professional Training, First Sechenov Moscow State Medical University under Ministry of Health of the Russian Federation

Email: turaevanastasia@yandex.ru

Ph.D. (Pharm.), Associate Professor of Pharmaceutical Technology Department

俄罗斯联邦, Moscow

N. Demina

State Education Institution of Higher Professional Training, First Sechenov Moscow State Medical University under Ministry of Health of the Russian Federation

Email: turaevanastasia@yandex.ru

Dr.Sc. (Pharm.), Professor of Pharmaceutical Technology Department

俄罗斯联邦, Moscow

I. Krasnyuk

State Education Institution of Higher Professional Training, First Sechenov Moscow State Medical University under Ministry of Health of the Russian Federation

Email: turaevanastasia@yandex.ru

Dr.Sc. (Pharm.), Professor of Pharmaceutical Technology Department

俄罗斯联邦, Moscow

参考

  1. Mehuys E., Delaey C., Christiaens T. et al. Eye drop technique and patient-reported problems in a real-world population of eye drop users. Eye (Lond). 2020; 34(8): 1392–1398.
  2. Aznabaev M.T., Azamatova G.A., Gajsina G.Ja. Glaznye lekarstvennye plenki v profilaktike infekcionno-vospalitel'nyh oslozhnenij. Saratovskij nauchno-medicinskij zhurnal. 2018; 14(4): 933–938.
  3. Bahrushina E.O., Anurova M.N., Demina N.B., Lapik I.V., Turaeva A.R., Krasnjuk I.I. Sistemy dostavki oftal'mologicheskih preparatov. Razrabotka i registracija lekarstvennyh sredstv. 2021; 10(1): 57–66.
  4. Ueno N., Refojo M.F. Ocular pharmacology of drug release devices. Controlled Drug Delivery. 2019; 89–109.
  5. Hromov G.L., Davydov A.B., Majchuk Yu.F. i dr. Vsesoyuznyj nauchno-issledovatel'skij institut hirurgicheskoj apparaturyаппаратуры i instrumentov. Osnova dlya glaznyh lekarstvennyh form. Patent SU 387559 МПК A1 61k 9/00 25.10.1974.
  6. De Masi A., Tonazzini I., Masciullo C., et al. Chitosan films for regenerative medicine: Fabrication methods and mechanical characterization of anostructured chitosan films. Biophysical Reviews. 2019; 11: 807–815.
  7. Kumar S. et al. Ocular Insert: Dosage Form for Sustain Opthalmic Drug Delivery. J Farm Klin Indones. 2012; 1(2): 61–73.
  8. Desiato A., Iyire A., Bhogal-Bhamra P. et al. Optimisation and evaluation of a soluble ocular insert for sustained release of levofloxacin. Invest. Ophthalmol. Vis. Sci. 2022; 63(7): 3959–A0239.
  9. Abdelkader H., Wertheim D., Pierscionek B. et al. Curcumin In Situ Gelling Polymeric Insert with Enhanced Ocular Performance. Pharmaceutics. 2020; 12(12): 1158.
  10. Mirzaeei S., Taghe S., Alany R.G. et al. Eudragit® L100/Polyvinyl alcohol nanoparticles impregnated mucoadhesive films as ocular inserts for controlled delivery of erythromycin: development, characterization and in vivo evaluation. Biomedicines. 2022; 10: 1917.
  11. Gabdrahmanova A.F., Kurbanov S.A., Meshherjakova S.A. i dr. GBOU VO «Bashkirskij gosudarstvennyj medicinskij universitet» Ministerstva zdravoohranenija RF. Glaznaja lekarstvennaja plenka s metiluracilom, obladajushhaja ranozazhivljajushhim jeffektom. Patent № 2 740 924 S2 RF MPK A61K 9/0051, A61K 31/513, A61K 47/32, A61P 27/02. № 2020119996.
  12. Terreni E., Burgalassi S., Chetoni P. et al. Development and Characterization of a Novel Peptide-Loaded Antimicrobial Ocular Insert. Biomolecules. 2020; 10(5): 664.
  13. Matejtschuk P., Phillips P., Andersen M. Freeze-drying of biological standards in lyophilization of pharmaceutical and biological products, 2nd ed.; CRC Press Inc.: Boca Raton, FL, USA, 2004.
  14. Mizina P. G., Kurkin V.A., Byakov M.A., et al. A Device for Determining the Adhesion of Medicinal Films in vitro. Pharmaceutical Chemistry Journal. 2001; 8(35): 450–452.
  15. Turaeva A.R., Bahrushina E.O., Krasnjuk I.I. Izuchenie vlijanija vspomogatel'nyh veshhestv na biofarmacevticheskie pokazateli lekarstvennoj formy «glaznye plenki». Mediko-farmacevticheskij zhurnal «Pul's». 2022; 24(7): 33–39.
  16. Alfadhel M., Puapermpoonsiri U., Ford S.J. et al. Lyo-philized inserts for nasal administration harboring bacteriophage selective for Staphylococcus aureus: in vitro evaluation. Int J Pharm. 2011; 416(1): 280–287.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Stages of production of eye films

下载 (15KB)
3. Fig. 2. Films obtained by freeze drying (A) and vacuum drying (B)

下载 (458KB)
##common.cookie##