Biocollection of pharmaceutical parasitic strains of Claviceps purpurea – base for selection of new lines producing ergoalkaloids in vitro

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Relevance. Ergot Claviceps purpurea is a very important source of pharmaceutical raw materials (ergoalkaloids).

Aim of the study – for biocollection maintenance two parasitic strains of Claviceps purpurea (Fries) Tulasne were reproduced by in planta cultivation on winter rye: ergotoxin A-6, ergotoxin VKM-F-2450-D.

Material and methods. Spectrophotometric determination of total content of indole alkaloids (with the van Urk reagent) and qualitative-quantitative selective determination of the alkaloid composition by thin-layer chromatography (TLC) with densitometric scanning of chromatograms were used.

Results. Maternal sclerotia contained from 0.6 to 1 g of alkaloids per 100 g of sample for VKM-F-2450-D, from 0.5 to 0.7 g per 100 g of sample for A-6. VKM-F-2450-D and A-6 contained from 30% to 40% of the sum of α-ergocryptine and ergocornine and approximately 20% of β-ergocryptine. New generation sclerotia contained from 0.31 to 0.76 g of alkaloids per 100 g of sample for VKM-F-2450-D, from 0.21 to 0.62 g per 100 g of sample for A-6. VKM-F-2450-D and A-6 contained from 40% to 62% and from 21% to 66% of the sum of α-ergocryptine and ergocornine, from 13% to 22% and from 13% to 36% of β-ergocryptine respectively.

Conclusion. Two stable lines (ergotoxin A-6-S, ergotoxin ВKM-F-2450-D-S) with in vitro biosynthesis of ergoalkaloids with purple pigmentations features were detected, isolated and subcultivated by morphological selection in axenic culture. Accumulation and retention of Claviceps genetic resources is very actual: biocollection of parasitic strains is a good reserve for selection of new saprophytic lines.

Full Text

Restricted Access

About the authors

A. A. Volnin

FSBSI All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Author for correspondence.
Email: volnin.a@mail.ru

Ph.D. (Biol.), Leading Research Scientist, Biotechnology Laboratory

Russian Federation, Moscow

N. S. Tsybulko

FSBSI All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Email: volnin.a@mail.ru

Ph.D. (Pharm.), Engineer, Biotechnology Laboratory

Russian Federation, Moscow

P. S. Savin

FSBSI All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Email: volnin.a@mail.ru

Ph.D. (Biol.), Leading Research Scientist, Biotechnology Laboratory

Russian Federation, Moscow

S. B. Myasnikova

FSBSI All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Email: volnin.a@mail.ru

Research Scientist, Biotechnology Laboratory

Russian Federation, Moscow

R. I. Bobyleva

Email: volnin.a@mail.ru
Russian Federation

References

  1. Volnin A.A., Savin P.S. Raznoobrazie alkaloidov i virulentnost' sporyn'i Claviceps purpurea (Fries) Tulasne: jevoljucija, geneticheskaja diversifikacija, metabolicheskaja inzhenerija (obzor). Sel'skohozjajstvennaja biologija. 2022; 57(5): 852–881. doi: 10.15389/agrobiology.2022.5.852rus.
  2. Smakosz A., Kurzyna W., Rudko M., Dąsal M. The usage of ergot (Claviceps purpurea (Fr.) Tul.) in obstetrics and gynecology: a historical perspective. Toxins, 2021; 13(7): 492. doi: 10.3390/toxins13070492.
  3. Králová M., Bergougnoux V., Frébort I. CRISPR/Cas9 genome editing in ergot fungus Claviceps purpurea. Journal of Biotechnology. 2021; 325: 341–354. doi: 10.1016/j.jbio-tec.2020.09.028.
  4. Králová M., Frébortová J., Pěnčík A., Frébort I. Overexpression of Trp-related genes in Claviceps purpurea leading to increased ergot alkaloid production. New Biotechnology. 2021; 61: 69–79. doi: 10.1016/j.nbt.2020.11.003.
  5. Wong G., Lim L.R., Tan Y.Q., Go M.K., Bell D.J., Freemont P.S., Yew W.S. Reconstituting the complete biosynthesis of D-lysergic acid in yeast. Nature Communication. 2022; 13(1): 712. doi: 10.1038/s41467-022-28386-6.
  6. Lieberman A., Kupersmith M., Estey E., Goldstein M. Treatment of Parkinson’s disease with bromocriptine. New England Journal of Medicine. 1976; 295(25): 1400–1404. doi: 10.1056/NEJM197612162952504.
  7. Winblad B., Fioravanti M., Dolezal T., Logina I., Milanov I.G., Popescu D.C., Solomon A. Therapeutic use of nicergoline. Clinical Drug Investigation. 2008; 28(9): 533–552. doi: 10.2165/00044011-200828090-00001.
  8. Tandowsky R.M. Clinical evaluation of combined hydrogenated ergot alkaloids (hydergine) in arterial hypertension: with special reference to their action in central manifestations. Circulation. 1954; 9(1): 48–56. doi: 10.1161/01.cir.9.1.48.
  9. Johnson J.W., Ellis M.J., Piquette Z.A., MacNair C., Carfrae L., Bhando T., Ritchie N.E., Saliba P., Brown E.D., Magolan J. Antibacterial activity of metergoline analogues: revisiting the ergot alkaloid scaffold for antibiotic discovery. ACS Medicinal Chemistry Letters. 2022; 13(2): 284–291. doi: 10.1021/acsmedchemlett.1c00648.
  10. Halliwell B., Cheah I. Ergothioneine, where are we now? FEBS Letters. 2022; 596(10): 1227–1230. doi: 10.1002/1873-3468.14350.
  11. Xiong L., Xie Z., Ke J., Wang L., Gao B., Tao X., Zhao M., Shen Y., Wei D., Wang F. Engineering Mycolicibacterium neoaurum for the production of antioxidant ergothioneine. Food Bioengineering. 2022; 1(1): 26–36. doi: 10.1002/fbe2.12004.
  12. van der Hoek S. A., Rusnák M., Wang G., Dimitrov Stanchev L., Alves L.F., Jessop-Fabre M.M., Paramasivan K., Hjorth Jacobsen I., Sonnenschein N., Martínez J.L., Darbani B., Kell D.B., Borodina I. Engineering precursor supply for the high-level production of ergothioneine in Saccharomyces cerevisiae. Metabolic Engineering. 2022; 70: 129–142. doi: 10.1016/j.ym-ben.2022.01.012.
  13. van der Hoek S.A., Rusnák M., Jacobsen I.H., Martínez J.L., Kell D.B., Borodina I. Engineering ergothioneine production in Yarrowia lipolytica. FEBS Letters. 2022; 596(10): 1356–1364. doi: 10.1002/1873-3468.14239.
  14. Fitopreparaty VILAR: nauchno-spravochnoe izdanie / pod obshh. red. T.A. Sokol'skoj. M.: Borus-Press. 2009. 255 s.
  15. Bobyleva R.I., Savin P.S. Izuchenie morfologicheskih i fiziologo-biohimicheskih osobennostej shtamma Claviceps purpurea (Fries) Tulasne BKMF-2641d v saprofitnoj kul'ture. Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himii. 2021; 24(12): 57–62. doi: 10.29296/25877313-2021-12-09.
  16. Savina T.A., Savin P.S., Bobyleva R.I. Jekzogennaja bioreguljacija razvitija Slaviceps purpurea (FR.) TUL. (Obzor). Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himii. 2018; 21(12): 28–34. doi: 10.29296/25877313-2018-12-06).
  17. Bobyleva R.I., Savin P.S. Fiziologicheskie i tehnologicheskie aspekty biosinteza jergoalkaloidov v saprofitnoj kul'ture Slaviceps purpurea (Fr.) Tulasne (obzor). Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himii. 2019; 22(10): 30–36. doi: 10.29296/25877313-2019-10-05.
  18. Wong G., Lim L.R., Tan Y.Q., Go M.K., Bell D.J., Freemont P.S., Yew W.S. Reconstituting the complete biosynthesis of D-lysergic acid in yeast. Nature Communication. 2022; 13(1): 712. doi: 10.1038/s41467-022-28386-6.
  19. Chen J., Han M., Gong T., Yang J., Zhu P. Recent progress in ergot alkaloid research. RSC Advances. 2017; 7(44): 27384–27396. doi: 10.1039/C7RA03152A.
  20. Hulvová H., Galuszka P., Frébortová J., Frébort I. Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids. Biotechnology Advances. 2013; 31(1): 79–89. doi: 10.1016/j.biotechadv.2012.01.005.
  21. Yao Y., Wang W., Shi W., Yan R., Zhang J., Wei G., Liu L., Che Y., An C., Gao S. Overproduction of medicinal ergot alkaloids based on a fungal platform. Metabolic Engineering. 2022; 69: 198–208. doi: 10.1016/j.ymben.2021.12.002.
  22. Mantle P. Comparative Ergot Alkaloid Elaboration by Selected Plectenchymatic Mycelia of Claviceps purpurea through Sequential Cycles of Axenic Culture and Plant Parasitism. Biology (Basel). 2020; 9(3): 41. doi: 10.3390/biology9030041.
  23. Shain S.S. Biologicheskie osnovy proizvodstva syr'ja sporyn'i (Claviceps Purpurea (Fr.) Tul.) v biotehnologicheskoj sisteme grib-rastenie (Obzor). Prikladnaja bio-himija i mikrobiologija. 1996; 32(3): 275–279.
  24. Fonin V.S., Sidjakina T.M., Shain S.S., Ozerskaja S.M., Pavlova E.F. Izuchenie uslovij hranenija promyshlennyh shtammov parazitarnoj kul'tury sporyn'i. Prikladnaja biohimija i mikrobiologija. 1996; 32(4): 406–410.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme for obtaining infectious conidial material by the surface method (on rye grain): 1 - mature sclerotium; 2 - superelite infectious material in test tubes on slanted agar medium; 3 - cloned infectious material in test tubes on slanted agar medium; 4 - infectious material in flasks-mattresses on rye grain

Download (28KB)
3. Fig. 2. Parasitic culture of ergot: 1 - conidial infectious material, conidiospores are shown by an arrow; 2 - infectious material on boiled rye grain; 3 - drops of "honey dew" on rye inflorescences; 4 - mature sclerotia on rye inflorescences

Download (160KB)
4. Fig. 3. Results of qualitative TLC analysis of the mycelium of two lines producing ergoalkaloids on the 30th day of cultivation and sclerotia of the parasitic culture: on the left, in vitro culture; on the right, sclerotia of parasitic cultures; A - ergotoxin A-6; B – ergotoxin VKM-F-2450-D; B - standard sample; 1 - the sum of ergocornine and α-ergocryptine (in the case of in vitro cultivation, presumably); 2 - β-ergocriptine (in the case of in vitro cultivation, presumably)

Download (57KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies