Quality control system for sample preparation and analysis results in the diagnosis of viral hepatitis B and C by real-time PCR

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Introduction. When conducting diagnostic tests for virus Infection, it is crucial to prevent the false negative results. For this, it is necessary to control all stages of the sample preparation process and the quality of the diagnostic reaction itself.

The aim of the work is to create an optimal combination of sample preparation exogenous quality control hepatitis B and C viruses detection system using real–time multiplex PCR to improve the accuracy, reproducibility and reliability of the results.

Material and methods. Hepatitis B virus DNA and hepatitis C virus RNA isolated from blood plasma samples from patients with confirmed diagnoses were used as the object of the study. The following resources were used to perform the in silico study: the online resource Primer-BLAST, integrated into the NCBI database; the online service OligoAnalyzer Tool (Integrated DNA Technologies), as well as the programs Oligo Primer Analysis Software, Clustal Omega and UGENE. The CFX96 Touch amplifier (Bio-Rad Laboratories, USA) was used for real-time PCR. PCR was performed using the "HBV Intifica" and "HCV Intifica" kits (Alkor Bio Group of Companies, Russia).

Results. A stable and robust multiplex PCR system has been developed to control the quality of sample preparation and diagnosis of viral hepatitis B and C from human blood plasma. Application of thermodynamic analysis to primers and probes design improves the efficiency of PCR systems, increases sensitivity and eliminates false negative results.

Conclusions. Thorough optimization of viral primers and probes characteristics, together with application of exogenous internal control in multiplex reaction, significantly improves the accuracy, reproducibility and reliability of analysis results.

全文:

受限制的访问

作者简介

A. Moroz

Peter the Great St. Petersburg Polytechnic University; Alkor Bio Group of Companies

编辑信件的主要联系方式.
Email: anny-nice@mail.ru
ORCID iD: 0000-0002-4693-623X
SPIN 代码: 4721-1020

Post-graduate Student, Higher School of Biotechnology and Food Production; Research Engineer

俄罗斯联邦, Novorossyskaya str. 48, Saint Petersburg, 194021; Zheleznodorozhny ave., 40a, Saint Petersburg, 192148

V. Toropov

Alkor Bio Group of Companies

Email: anny-nice@mail.ru
ORCID iD: 0009-0005-1993-5572

Leading Research Engineer

俄罗斯联邦, Zheleznodorozhny ave., 40a, Saint Petersburg, 192148

V. Bolshakov

Peter the Great St. Petersburg Polytechnic University; Alkor Bio Group of Companies

Email: anny-nice@mail.ru
ORCID iD: 0009-0007-5126-6035

Ph.D. (Biol.), Associate Professor, Associate Professor of the Higher School of Biotechnology and Food Production;  Head of the Laboratory of Molecular Diagnostics

俄罗斯联邦, Novorossyskaya str. 48, Saint Petersburg, 194021; Zheleznodorozhny ave., 40a, Saint Petersburg, 192148

E. Aronova

Peter the Great St. Petersburg Polytechnic University

Email: anny-nice@mail.ru
ORCID iD: 0000-0003-4376-2972
SPIN 代码: 7288-6820

Ph.D. (Tech.), Associate Professor, Associate Professor of the Higher School of Biotechnology and Food Production

俄罗斯联邦, Novorossyskaya str. 48, Saint Petersburg, 194021

参考

  1. Фаенко А.П., Филиппова А.А., Голосова С.А. и др. Внедрение лабораторного исследования на анти-НВсоге у доноров крови. Гематология и трансфузиология. 2022; 67(4): 525–534. [Faenko A.P., Filippova A.A., Golosova S.A. i dr. The introduction of Laboratory testing for anti-HBcore in blood donors. Gematologiya i transfuziologiya. 2022; 67(4): 525–534. (In Russ.)]. doi: 10.35754/0234-5730-2022-67-4-525-534.
  2. Останкова Ю.В., Серикова Е.Н., Семенов А.В. и др. Молекулярно-генетическая характеристика полнораз-мерного генома вируса гепатита В у HBsAg-негативных доноров крови в Уральском федеральном округе. Журнал микробиологии, эпидемиологии и иммунобиологии. 2022; 99(6): 637–650. [Ostankova Yu.V., Serikova E.N., Semenov A.V. i dr. Molecular and genetic characterization of the hepatitis B virus full-length genome sequences identified in HBsAg-negative blood donors in Ural Federal District. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2022; 99(6): 637–650. (In Russ.)]. DOI: https://doi.org/10.36233/0372-9311-325.
  3. Хорькова Е.В., Лялина Л.В., Микаилова О.М. и др. Актуальные вопросы эпидемиологического надзора за хроническими вирусными гепатитами B, C, D и гепатоцеллюлярной карциномой на региональном уровне. Здоровье населения и среда обитания. 2021;29(8):76-84. [Khorkova E.V., Lyalina L.V., Mikailova O.M. i dr. Current issues of epidemiological surveillance of chronic viral hepatitis B, C, D and hepatocellular carcinoma at the regional level. Zdorov'e naseleniya i sreda obitaniya. 2021;29(8):76-84. (In Russ.)]. doi: 10.35627/2219-5238/2021-29-8-76-84.
  4. Волков А.Н., Начева Л.В. Молекулярно-генетические методы в практике современных медико-биологических исследований. ЧАСТЬ III: генодиагностика человека при решении медицинских задач. Фундаментальная и клиническая медицина. 2021; 6(3): 100–109. [Volkov A.N., Nacheva L.V. Molecular genetic methods in biomedical research. Part III: human gene diagnostics in clinical practice. Fundamental'naya i klinicheskaya meditsina. 2021; 6(3): 100–109. (In Russ.)]. doi: 10.23946/2500-0764-2021-6-3-100-109.
  5. Aydogan S., Acikgoz Z.C, Gozalan A. et al. Comparison of a novel real-time PCR method (RTA) and Artus RG for the quantification of HBV DNA and HCV RNA. J Infect Dev Ctries. 2017; 11(7): 543–548. doi: 10.3855/jidc.8363.
  6. Tan B., Qin L., Chen C. et al. Multiplex fluorescence quantitative polymerase chain reaction for simultaneous detection of hepatitis B virus, hepatitis C virus and human immunodeficiency virus. Clin Lab. 2015; 61(1-2): 53–59. doi: 10.7754/clin.lab.2014.131102.
  7. Оскорбин И.П., Шевелёв Г.Ю., Проняева К.А. и др. Вы-явление РНК SARS-CoV2 с помощью мультиплексной изо-термической петлевой амплификации с обратной транс-крипцией методом анализа кривых плавления. Вопросы биологической, медицинской и фармацевтичес-кой химии. 2020; 23(12): 3−10. [Oscorbin I.P., Shevelev G.Yu., Pronyaeva K.A. i dr. Detection of SARS-CoV2 RNA using multiplex reverse transcription loop-mediated isothermal amplification with melting curve analysis. Voprosy biologicheskoi, meditsinskoi i farmatsevticheskoi khimii. 2020; 23(12): 3–10. (In Russ.)]. doi: 10.29296/25877313-2020-12-01.
  8. Da Silva M.C.C., De Abreu L.C.L., Do Carmo F.A. et al. Development of a validation protocol method for nucleic acid testing to detect human immunodeficiency virus, hepatitis C virus, and hepatitis B virus. An Acad Bras Cienc. 2022; 94(3). doi: 10.1590/0001-3765202220211321.
  9. Martínez-Santolaria M., Sota-Diez C., García-Manrique B. et al. A-300 Evaluation of Different Storage Conditions of Nasopharyngeal Swabs for the Detection of Influenza A, Influenza B and RSV. Clinical Chemistry. 2023; 69(1). doi: 10.1093/clinchem/hvad097.265.
  10. Cheung H.W., Wong K.S., Lin V.Y.C. et al. Optimization and implementation of four duplex quantitative polymerase chain reaction assays for gene doping control in horseracing. Drug Test Anal. 2022; 14(9): 1587–1598. doi: 10.1002/dta.3328.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Thermodynamic stability for primers F_x20 (A) and F_x16 (B). Along the abscissa axis is the length of the oligonucleotide, along the ordinate axis is ΔG

下载 (33KB)
3. Fig. 2. Influence of thermodynamic characteristics of primers on the sensitivity and specificity of hepatitis C virus detection in samples with different viral loads. (A) – calculation of amplification curves by regression method; (B) is the result of amplification in logarithmic coordinates. The amplification cycles are on the abscissa axis, and the amplification signal intensity is on the ordinate axis (1 – the result of amplification of a sample with a high viral load (2.5·104 IU/µl) for a system with a direct primer F_x20 without thermodynamically stable secondary structures; 2 – the result of amplification of a sample with a low viral load (5·102 IU/µl) for a system with a direct primer F_x20 without thermodynamically stable secondary structures; 3 – the result of amplification of a sample with a high viral load (2.5·104 IU/µl) for a system with a direct primer F_x16 with thermodynamically stable secondary structures annealed onto a site of nucleic acid with a thermodynamically stable secondary structure; 4 are the result of amplification of a sample with a low viral load (5·102 IU/µl) for a system with a direct primer F_x16 with thermodynamically stable secondary structures annealed onto a site of nucleic acid with a thermodynamically stable secondary structure)

下载 (59KB)
4. Fig. 3. Results of detection of hepatitis C virus by a multiplex thermodynamically balanced PCR system using an internal control sample. Amplification curves: 1 – concentrated hepatitis C virus matrix; 2 – diluted hepatitis C virus matrix; 3 – internal control sample; 4 – negative control sample. The amplification cycles are on the abscissa axis, and the amplification signal intensity is on the ordinate axis

下载 (105KB)
5. Fig. 4. Results of hepatitis B virus detection by a multiplex thermodynamically balanced PCR system using an internal control sample.  Amplification curves of concentrated and dilute hepatitis B virus DNA matrix for a system of primers and probes developed taking into account thermodynamic calculations: 1 – concentrated hepatitis B virus matrix; 2 – diluted hepatitis B virus matrix; 3 – internal control sample; 4 – negative control sample. The amplification cycles are on the abscissa axis, and the amplification signal intensity is on the ordinate axis

下载 (86KB)

版权所有 © Russkiy Vrach Publishing House, 2025