The content of secondary metabolites in the aril of Taxus сanadensis Marshall plants, which determine its biological activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Taxus сanadensis Marshall are the shortest shade–tolerant and frost-resistant representatives of relict gymnosperms belonging to the genus Taxus. Valuable yew wood is able to accumulate unique secondary metabolites that have no synthetic analogues and are successfully used in the treatment of oncological diseases. It is known that secondary metabolites of plants play a direct regulatory role in the physiological and biochemical processes of the plant organism. Therefore, at the first stage of our research, it is necessary to determine the features of formation and localization of secondary compounds of phenolic and terpenoid nature with high biological activity in the arils of seeds of plants of the genus Taxus.

The purpose of the study to investigate the features of formation and localization of secondary compounds of phenolic and terpenoid nature with high biological activity in the arils of seeds of plants of the genus Taxus and to determine their cytotoxic effect.

Material and methods. The object of the study was the seed-cones of Canadian yew (Taxus canadensis), collected during the growing season (June-October) from plants introduced in the Moscow region. The localization of phenolic compounds was studied in the appendage (aril) of yew seeds collected at different stages of formation and maturation. To do this, histochemical methods were used: to identify the amount of phenolic compounds, the material was stained with 0.08% Fast Blue reagent raster, and a reaction with vanillin reagent in hydrochloric acid vapor was used to study the localization of flavans (catechins and proanthocyanidins). The localization of terpenoids was determined using NADI reagent. The content of the sum of soluble phenolic compounds, flavans and flavonols in the extracts was determined by the spectrophotometric method. The cytotoxic properties of the extracts were studied using an MTT test.

Results. Plants of the genus Taxus are characterized by the formation of an overgrown fleshy appendage – aril rich in metabolites of primary and secondary origin. It was shown that, during the entire growing season, and at various stages of aril development, the studied parts of the plant have a high ability to biosynthesize secondary compounds of phenolic and terpenoid nature, which were localized in the epidermal cells of the apex and the underlying layer of parenchyma cells, the cells of the basal part of the aril, and also in some idioblasts located in the parenchyma. Flavones are the dominant components of the phenolic complex of aril. localized

Conclusion. Extracts from the vegetative organs of yew plants have pronounced cytotoxic activity, and extractive substances from aril have shown no cytotoxic effect, which indirectly indicates its low toxicity.

Full Text

Restricted Access

About the authors

S. M. Zaytseva

Russian State Agrarian University – Moscow Agricultural Academy named after K.A. Timiryazeva

Author for correspondence.
Email: smzaytseva@yandex.ru
ORCID iD: 0000-0001-9137-3774
SPIN-code: 5553-8033

Ph.D. (Biol.), Associate Professor, Department of Biotechnology

Russian Federation, 49, Timiryazevskaya St., Moscow, 127434

E. A. Kalashnikova

Russian State Agrarian University – Moscow Agricultural Academy named after K.A. Timiryazeva

Email: kalash0407@mail.ru
ORCID iD: 0000-0002-2655-1789
SPIN-code: 6776-2635

Dr.Sc. (Biol.), Professor, Department of Biotechnology

Russian Federation, 49, Timiryazevskaya St., Moscow, 127434

R. N. Kirakosyan

Russian State Agrarian University – Moscow Agricultural Academy named after K.A. Timiryazeva

Email: mia41291@mail.ru
ORCID iD: 0000-0002-5244-4311
SPIN-code: 5260-8784

Ph.D. (Biol.), Associate Professor, Department of Biotechnology

Russian Federation, 49, Timiryazevskaya St., Moscow, 127434

A. A. Balakina

Federal Research Center for Problems of Chemical Physics and Medical Chemistry

Email: balakina@icp.ac.ru
ORCID iD: 0000-0002-5952-9211
SPIN-code: 2217-3493

Ph.D. (Biol.), Senior Research Scientist, Laboratory of Molecular Biology

Russian Federation, Semenov avenue 1, Chernogolovka, Moscow region, 142432

N. A. Trusov

Tsytsin Main Botanical Garden of RAS

Email: n-trusov@mail.ru
ORCID iD: 0000-0002-5147-6602
SPIN-code: 2193-2203

Ph.D. (Biol.), Senior Research Scientist, Laboratory of Dendrology

Russian Federation, 4, Botanicheskaya St., Moscow, 127276

References

  1. Thomas P.A., Polwart A. Taxus baccata L. Journal of Ecology. 2003; 91(3): 489–524.
  2. Dörken V. M., Nimsch H., Rudall P.J. Origin of the Taxaceae aril: evolutionary implications of seed-cone teratologies in Pseudotaxus chienii. Annals of Botany. 2019; 123: 133–143.
  3. Трусов Н.А. Морфологическая природа и функции ариллусов некоторых представителей родов Aristolochia, Asa-rum, Celastrus, Euonymus, Euphorbia, Viola и Taxus. Turc-zaninowia. 2016; 19(3): 106–114. [Trusov N.A. Morpho-logical nature and functions of arillus of some representatives of the genera Aristolochia, Asarum, Celastrus, Euonymus, Euphorbia, Viola and Taxus. Turczaninowia. 2016; 19(3): 106–114. (In Russ.)]. doi: 10.14258/turczaninowia.19.3.7.
  4. Brooks‐Lim L.W.L., Mérette S.A., Hawkins B.J. et al. Fatal ingestion of Taxus baccata: English yew. Journal of Forensic Sciences. 2021; 56; https://doi.org/10.1111/1556-4029.14941.
  5. Willaert W., Claessens P., Vanderheyden M. Intoxication with Taxus baccata: Cardiac Arrhythmias Following Yew Leaves Ingestion Published 1 April 2002 Medicine Pacing and Clinical Electrophysiology doi: 10.1046/j.1460-9592.2002.00511.x.
  6. Ничаев В.А., Ничаев А.А. Птицы – потребители и распространители семян тиса остроконечного Taxus cuspidata Siebold et Zucc. на Дальнем Востоке России Вестник ДВО РАН. 2018; 2. [Nichaev V.A., Nichaev A.A. Birds – consumers and distributors of yew seeds Taxus cuspidata Siebold et Zucc. in the Far East of Russia Bulletin FEB RAS. 2018; 2. (In Russ.)].
  7. Растительные ресурсы России и сопредельных государств: Часть I. Семейства Lycopodiaceae – Ephedraceae. Часть II. Дополнения к 1-7-му томам. СПб.: Мир и семья-95, 1996. 571 с. [Plant resources of Russia and neighboring countries: Part I – The Lycopodiaceae – Ephedraceae family. Part II. Supplements to volumes 1-7. St. Petersburg: Mir i Semya-95. 1996. 571 p. (In Russ.)].
  8. Дьякова И.Н. Морфо-анатомические особенности над-земной части Taxus baccata L. Новые технологии. 2014; Вып. 4: 68–72. [Dyakova I.N. Morpho-anatomical osobenosti nadzemnoy chasti Taxus baccata L. Novie technologii. 2014; Issue 4: 68–72. (In Russ.)].
  9. Lukner M. Secondary metabolism in microorganisms, plants and animals. M.: Mir. 1979; 548 p.
  10. Алексеева Г.М., Белодубровская Г.А., Блинова К.Ф. и др. Фармакогнозия. Лекарственное сырье растительного и животного происхождения. Под редакцией Г.П. Яковлева. Санкт-Петербург. СпецЛит 2013. [Alekseeva G.M., Belo-dubrovskaya G.A., Blinova K.F. i dr. Farmakognoziya. Lekarstvennoe siriyo rastitelnogo i zhivotnogo proiacho-zhdeniya. Pod redakciey G.P. Yakovlevoy. Sankt-Petersburg. SpetcLit. 2013. (In Russ).].
  11. Ткаченко Е.В., Андреев В.В., Яценко А.В. и др. Нейротоксичность как побочный эффект при использовании таксанов у онкологических больных. Российский журнал боли. 2020; 18(3): 48–53. [Tkachenko E.V., Andreev V.V., Yatsenko A.V. i dr. Neurotoxicity kak pobochniy effect pri ispolzovanii taxanes u oncologicheskich bolinich. Russian Journal Boli. 2020; 18(3): 48–53. (In Russ).].
  12. Paller C.J., Antonarakis E.S: Cabazitaxel: a novel second-line treatment for metastatic castration-resistant prostate cancer. Drug Des Dev and Ther. 2011; 5: 117–24.
  13. Пасешникенко В.А. Регуляция терпеноидного биосинтеза в растениях и его связи с биосинтезом фенольных соединений. Физиология растений. 1995; 42(5): 787–804. [Pasesh-nikenko V.A. Regulation of terpenoid biosynthesis in plants and its connection with biosynthesis of phenolic compounds. Plant Physiology. 1995; 42(5): 787–804. (In Russ.)].
  14. Shiro Suzuki, Toshiaki Umezawa. Biosynthesis of lignans and norlignans. Journal of Wood Science. 2007; 53: 273–284.
  15. Kochkin D.V., Demidova E.V., Globa E.B. et al. Polyesters of 14-Hydroxylated Taxoids Found for the First Time in Taxus canadensis Intact Plants. Fiziologiâ rastenij. 2023; 70(1): 71–79. doi: 10.31857/S0015330322600401.
  16. Russin W., Ellis D., Evert R. Immunocytochemical Loca-lization of Taxol in Taxus cuspidate. International Journal of Planta Sciences Publishe 1 Sep. 1995. doi: 10.1086/297289.
  17. Laoué J., Fernandez C., Ormeño E. Plant Flavonoids in Me-diterranean Species: A Focus on Flavonols as Protective Me-tabolites under Climate Stress. Plants 2022; 11: 172.
  18. Şahin Selin, Saeed Nasir, Malik Ahmed et al. Seasonal Changes of Individual Phenolic Compounds in Leaves of Twenty Olive Cultivars Grown in Texas. Journal of Agri-cultural Science and Technology. 2012; B 2: 242–247.
  19. Запрометов М.Н. Фенольные соединения и их роль в жизни растения. LVI Тимирязевские чтения. М.: Наука. 1996. 45 с. [Zaprometov M.N. Phenolic soedineniya I ich role v zhizni rasteniy. LVI Timiryazev readings. M.: Nauka. 1996. 45 c. (In Russ)].
  20. Буданова Е.В., Горленко К.Л., Киселев Г.Ю. Вторичные метаболиты растений: механизмы антибактериального действия и перспективы применения в фармакологии. Антибиотики и химиотерапия. 2019; 64; 56. [Budanova E.V., Gorlenko K.L., Kiselev G.Yu. Vtorichniyi metaboliti rasteniy: mechanismi antibacterialnogo deistviya I perspec-tive primineniya v pharmacologii. Antibiotiki i chemohe-rapiya. 2019; 64; 56. (In Russ.)].
  21. Беседнова Н.Н., Андрюков Б.Г., Запорожец Т.С. и др. Полифенолы из наземных и морских растений как ингибиторы репродукции коронавирусов. Антибиотики и химиотерапия. 2021, 66; 34. [Besednova N.N., Andriukov B.G., Zaporozhets T.S. i dr. Polyphenoli iz nazemnich I morskich rasteniy kak inhibitori reproduccii coronavirusov. Antibiotics and chemotherapy. 2021; 66: 34 (In Russ)].
  22. Chattopadhyay S.K., Kulshrestha M., Tripathi V. Studies on the Himalayan yew Taxus wallichiana: Part VII – The taxoids and phenolic constituents of the roots of Taxus wallichiana. (vol 38b, pg 701, 1999). Indian journal of chemistry section B-organic chemistry including medical chemistry. 2000; 39(I.7): 562–566.
  23. Hosam O. Elansary, Afnieszka Szopa, Pawel Kubica, Fahed A. Al-Mana. Phenolic Compounds of Catalpa speciosa, Taxus cuspidate, and Magnolia acuminata have Antioxidant and Anticancer Activity. Molecules. 2019; 24(3): 412. doi: 10.3390/molecules24030412.
  24. Dubravina G.A., Zaitseva S.M., Zagoskina N.V. Changes in the formation and localization of phenolic compounds during dedifferentiation of berry yew and Canadian yew tissues in in vitro conditions. Plant Physiology. 2005; 52: 755–762.
  25. Chunna Yu, Xiaori Zhan, Chengchao Zhang et al. Comparative metabolomic analyses revealed the differential accumulation of taxoids, flavonoids and hormones among six Taxaceae trees. Scientia Horticulturae. 2021; 285: 110196.
  26. Wei Q., Li Q.Z., Wang R.L. Flavonoid Components, Distri-bution, and Biological Activities in Taxus: A review. Molecules. 2023; 28(4): 1713. doi: 10.3390/molecu-les28041713.
  27. Soukupova J., Cvikrova M., Albrechtova J., Rock B.N., Eder J. Histochemical and Biochemical Approaches to the Study of Phenolic Compounds and Peroxidases in Needles of Norway Spruce (Picea abies). New Phytol. 2000; 146: 403–414.
  28. Бабушкина Е.В., Смирнов П.Д., Костина О.В., Муравник Л.Е. Гистохимия трихом официнальных представителей семейства Lamiaceae. 2017; 3 (48). Медицинский альманах. [Babushkina E.V., Smirnov P.D., Kostina O.V., Muravnik L.E. Histochemiya trichom officialnich predstaviteley semey-stva Lamiaceae family. Medicinskiy Almanach. 2017; 3(48). (In Russ.)].
  29. Запрометов М.Н. Фенольные соединения и методы их исследования. Биохимические методы в физиологии растений. Под ред. О.А. Павлиновой. М.: Наука, 1971; 185–197. [Zaprometov M.N. Phenolniye soedineniya i methodi ich issledovaniya. Biochemicheskiyi metodi v physiologii rasteniy. Pod red. O.A. Pavlinovoy. M.: Nauka. 1971; 185–197. (In Russ.)].
  30. Trusov N.A. Development of the seed-cones in Taxus canadensis in culture (Tsytsin Main Botanical Garden RAS, Moscow, Russia). Botanica Pacifica. A journal of plant science and conservation. 2022; 11(1): 74–82. doi: 10.17581/bp.2022.11115.
  31. Зайцева С.М. образование и локализация биофлаваноидов в семенах растений, обладающих лекарственными свойствами на примере тисса яголного (Taxus baccata L.) и тисса канадского (Taxus сanadensis Marsh). Актуальные вопросы ветеринарной биологии. 2018; 2(38): 32–38. [Zaytseva S.M. Obrazovanie I localizatsiya bioflavanoidov v semenakch rasteniy obladaushikch lekarstvennimi svoistvami na primere Taxus baccata L. i Taxus сanadensis Marsh. Aktualnie problemi veterinarnoy biologii. 2018; 2(38): 32–38. (In Russ.)].
  32. Na Li, Zheng Pan, Dan Zhang et al. Chemical Components, Biological Activities, and Toxicological Evaluation of the Fruit (Aril) of Two Precious Plant Species from Genus Taxus. Chem Biodivers. 2017; 14(12). doi: 10.1002/cbdv.201700305.
  33. Myranaka T., Kurose K. Utilisation of extractives from Taxus Tree antifungal activities of flavonoids, Taxinine and its derivatives against Cochliobolus-Miyabeanus and Alternaria-Kikuchiana. Mokuzai Gakkaishi. 1999; 45(I.1): 42–55.
  34. Волынец А.П. Фенольные соединения в жизнедеятельности растений. Минск: Беларус. навука. 2013; 283 с. [Volynets A.P. Phenolic compounds in the vital activity of plants. Minsk: Belarus. Navuka. 2013; 283 p. (In Russ.)].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Yew shoot with seed-cones at the initial stages of development (A). Localization of flavans in the forming aril (Б) and the closing cells of stomata (В) (reaction with vanillin reagent).

Download (186KB)
3. Fig. 2. The yew shoot with seeds of the aril (A), the seed surrounded by the aril (Б). Staining of a aril and scales for the total content of polyphenols with Fast Blue reagent (B) and NADIA reagent for terpenoids (Г). Localization of polyphenols (Д, E), flavans (Ж, З) and terpenoids (И–Л) in aril

Download (501KB)
4. Fig. 3. Changes in the content of the sum of soluble phenolic compounds (СФ), flavans (ФЛ) and flavanols (ФЛН) in the aril of the сanadian yew at different stages of development

Download (16KB)
5. Fig. 4. Cytotoxicity of ethanol extras of shoots (A) and aril (B) of сanadian yew on various lines of tumor (HepG2, HeLa and A-172-) and normal (FetMSC) cells

Download (89KB)

Copyright (c) 2025 Russkiy Vrach Publishing House