Development of a quantification method for the quality control of a novel water soluble substance, рotassium (3-(4-hydroxy-3,5-dimethylbenzylthio) propionate(TF-7)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. One of the promising directions of antioxidant chemistry development is the synthesis and study of specific activity of organic compounds based on sulphur. The most active research in this area is carried out at the Department of Chemistry of FSBI HE Novosibirsk State Pedagogical University together with the Research Institute of Antioxidant Chemistry.

Aim – to select and study the spectrophotometric and titrimetric characteristics of sulfur-containing water-soluble antioxidant TF-7 and compare them.

Material and Methods. In this study, the spectrophotometric characteristics of a novel water-soluble antioxidant, TF-7 (3-(4-hydroxy-3,5-dimethylbenzylthio)potassium propionate), were investigated. A spectrophotometric methodology was employed for the purposes of quantitative and qualitative analysis. The titrimetric methods of acidimetry, iodometry and mercurimetry were selected for comparative analysis of the new substance TF-7.

Results. The preliminary studies indicated that the spectrophotometric analysis of the pharmaceutical substance in the ultraviolet (UV) spectrum exhibited a maximum at a wavelength of 276 ± 2 nanometres (nm). The mercurimetry method was identified as the most accurate of the selected titrimetric methods for the determination of TF-7, with an equation of y=1,014895x+0,0000001 and a correlation coefficient of 0.9996.

Сonclusion. The characterisation of spectrophotometric and titrimetric methods of analysis for the quantification of the new substance TF-7 has been developed. It has been demonstrated that the aforementioned methods of obtaining qualitative and quantitative characteristics for spectrophotometric determination and mercurimetry titration are optimal for analysis in model solutions.

Full Text

Restricted Access

About the authors

W. Т. Mukundwi

Novosibirsk State Medical University

Author for correspondence.
Email: willardmkundwi@gmail.com
ORCID iD: 0009-0005-6654-7185

Post-graduate Student, Department of Pharmaceutical Chemistry

Russian Federation, Krasny Prospect 52, Novosibirsk, 630091

S. V. Terentyeva

Novosibirsk State Medical University; Novosibirsk State Pedagogical University

Email: willardmkundwi@gmail.com
ORCID iD: 0000-0003-3566-2760
SPIN-code: 6439-9850

Dr.Sc. (Pharm.), Professor of the Department of Pharmaceutical Chemistry; Professor of the Department of Chemistry

Russian Federation, Krasny Prospect 52, Novosibirsk, 630091; Vilyuyskaya st., 28, Novosibirsk, 630126

А. V. Ligostaev

Novosibirsk State Medical University

Email: willardmkundwi@gmail.com
ORCID iD: 0009-0002-0317-6944

Ph.D. (Pharm.), Associate Professor of the Department of Pharmaceutical Chemistry

Russian Federation, Krasny Prospect 52, Novosibirsk, 630091

Е. А. Ivanovskaya

Novosibirsk State Medical University

Email: willardmkundwi@gmail.com
ORCID iD: 0000-0002-9338-5792

Dr.Sc. (Pharm.), Professor, Head of the Department of Pharmaceutical Chemistry

Russian Federation, Krasny Prospect 52, Novosibirsk, 630091

N. V. Kandlintseva

Novosibirsk State Pedagogical University

Email: willardmkundwi@gmail.com
ORCID iD: 0000-0001-6022-934X
SPIN-code: 9814-7106

Dr.Sc. (Chem.), Associate Professor, Head of the Department of Chemistry

Russian Federation, Vilyuyskaya st., 28, Novosibirsk, 630126

А. S. Oleynik

Novosibirsk State Pedagogical University

Email: willardmkundwi@gmail.com
ORCID iD: 0009-0007-1113-6682
SPIN-code: 8988-3870

Ph.D. (Chem.) Associate Professor of the Department of Chemistry

Russian Federation, Vilyuyskaya st., 28, Novosibirsk, 630126

References

  1. Adel`shina E.B., Prosenko O.I., Kandalinceva N.V. Aleksandr Evgen`evich Prosenko: Nauchnoe Nasledie. Svobodny`e radikaly` i antioksidanty` v ximii, biologii i medicine Materialy` vserossijskoj konferencii s mezhdunarodny`m uchastiem, posvyashhennoj 75-j godovshhine so dnya rozhdeniya professor Aleksandra Evgen`evicha Prosenkog. Novosibirsk. 2022. (In Russ.).
  2. Meier H., Kuenzi H., Knobloch G., et al. Reactions of Sulfur Containing Phenolic Antioxidants for Elastomers. Phosphorus, Sulfur, and Silicon and the Related Elements. 1999; 153(1): 275–300; https://doi.org/10.1080/10426509908546440.
  3. Ahmad M.H., Rahman N.A., Kadir F.A. et al. Design and synthesis of sulfur-containing butylated hydroxytoluene: antioxidant potency and selective anticancer agent. J Chem Sci. 2019; 131: 107p; https://doi.org/10.1007/s12039-019-1682-x.
  4. Damiano Tanini, Veronica D'Esopo, Dan Chen et al. Novel sulfur and selenium-containing antioxidants: Synthesis and evaluationof their GPx-like activity. Phosphorus, Sulfur, and Silicon and the Related Elements. 2017; 192(2): 166–168. doi: 10.1080/10426507.2016.1252365.
  5. Kandalinceva N.V. Polifunkcional`ny`e vodorastvorimy`e antioksidanty` fenol`nogo tipa. Okislenie, okislitel`ny`j stress, antioksidanty`: Doklady` i tezisy` Vseross. konf. molody`x ucheny`x i VII shkola im. akad. N.M. E`manue`lya. M.: RUDN. 2015: 81–101. (In Russ.).
  6. Men`shhikova E.B., Lankin V.Z., Kandalinceva N.V. Fenol`ny`e antioksidanty` v biologii i medicine. Saarbrücken. 2012. (In Russ.).
  7. Olejnik A.S., Kuprina T.S., Pevneva N.Yu. i dr. Sintez i antioksidantny`e svojstva S-(3-(gidroksiaril)propil)tiosul`fatov i (3-(gidroksiaril)propan)-1-sul`fonatov natriya. Izv. AN. Ser. xim. 2007; 6: 1094–1101. (In Russ.).
  8. Sirotenko A.A. Titrimetric microdetermination of sulfur in compounds containing alkali or alkaline earth. Mikrochim Acta. 1955; 43: 153–154; https://doi.org/10.1007/BF01220665.
  9. Tiwari K.K., Verma R.M. Titrimetric microdetermination of certain sulphur-containing organic compounds by oxidation with alkaline potassium permanganate. Talanta. 1983; 30(6): 440–442. doi: 10.1016/0039-9140(83)80103-9.
  10. Tiwari K.K., Verma R.M. Titrimetric determination of certain mercaptans with mercuric chloride. Talanta. 1981; 28(6): 397–398. doi: 10.1016/0039-9140(81)80192-0.
  11. Pelosi C., Quaranta A., Rollo M. et al. Preparation and Characterization of Zinc(II)-Based Lewis/Brønsted Acidic Deep Eutectic Solvents. Molecules 2023, 28, 8054; https://doi.org/10.3390/molecules28248054.
  12. Eiji Hayashi, Yukio Takahashi, Hironori Itoh, Norihiko Yoneda. Enhancement of Catalytic Activity of ZnCl2 in the Friedel–Crafts Benzylation of Benzenes Using Polar Solvents, Bulletin of the Chemical Society of Japan. 1993; 66(Issue 11): 3520–3521; https://doi.org/10.1246/bcsj.66.3520.
  13. Gosudarstvennaya farmakopeya Rossijskoj Federacii. XV izdaniya (In Russ.). URL: https://pharmacopoeia.regmed.ru/pharmacopoeia/izdanie-15.
  14. Belikov V.G. Farmacevticheskaya ximiya: uchebnoe posobie v 2 chastyax, 5-e izd. Uchebnoe posobie. M.: MEDpress-inform. 2021; 616 c. (In Russ.).
  15. Mukundvi V.T., Ivanovskaya E.A., Ligostaev A.V. Razrabotka metodiki kolichestvennogo opredeleniya substancii gidrofil`nogo antioksidanta TF-7 metodom inversionnoj vol`tamperometrii. Journal of Siberian Medical Sciences. 2024; 8(2): 80–89. (In Russ.). doi: 10.31549/2542-1174-2024-8-2-80-89.
  16. European Pharmacopoeia 8th Edition-2022 Technical Guide for the Elaboration of Monographs.
  17. GOST R 8.600-2003. Gosudarstvennaya sistema obespecheniya edinstva izmerenij. Metodiki vy`polneniya izmerenij massovoj doli osnovnogo veshhestva reaktivov i osobo chisty`x veshhestv titrimetricheskimi metodami. (In Russ.).
  18. EURAMET Calibration Guide No. 21, version 2.0(05/2020).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The structural formula for 3-(4-hydroxy-3,5-dimethylbenzylthio)potassium propionate(TF-7)

Download (21KB)
3. Fig. 2. The spectrum of 3-(4-hydroxy-3,5-dimethylbenzylthio)potassium propionate (0.01%) in purified water (а) and 0.0004% zinc chloride (б)

Download (254KB)
4. Fig 3. Spectra of solvent ZnCl2 0.0004% (а) and TF-7 + ZnCl2 solution (б)

Download (215KB)
5. Fig. 4. Absorption spectra of test sample solutions (0.005%) for precision evaluation

Download (99KB)
6. Fig. 5. The control card for the spectrophotometric method of analysis; the avg indicates the average concentration value of the test sample, while the UL and LL lines represent the limits of ±2S

Download (48KB)
7. Fig. 6. The absorption spectra of the test sample solutions to be evaluated according to the linearity characteristic

Download (105KB)
8. Fig. 7. This graph shows the relationship between the sample concentration that was calculated and the actual concentration

Download (47KB)
9. Fig. 8. The control card for the mercurimetric method of quantification; the avg indicates the average concentration value of the test sample, while the UL and LL lines represent the limits of ± 2S

Download (57KB)
10. Fig. 9. Linearity graph calculated sample mass vs the actual sample mass

Download (80KB)

Copyright (c) 2025 Russkiy Vrach Publishing House