Fluence of metformin on ferroptosis (literature review)
- Authors: Nikolaev A.A.1, Ushakova M.V.1, Boskhomdzhieva M.V.2
-
Affiliations:
- Astrakhan State Medical University of the Ministry of Health of the Russian Federation
- Budgetary institution of the Republic of Kalmykia "Republican Oncology Dispensary named after Timoshkaeva E.S."
- Issue: Vol 28, No 10 (2025)
- Pages: 27-33
- Section: Biological chemistry
- URL: https://journals.eco-vector.com/1560-9596/article/view/693125
- DOI: https://doi.org/10.29296/25877313-2025-10-04
- ID: 693125
Cite item
Abstract
Metformin biguanide is the most widely used oral antidiabetic drug for the treatment of type 2 diabetes mellitus (T2DM). Metformin inhibits gluconeogenesis by suppressing complex I of the respiratory chain, thereby reducing oxygen consumption. In connection with the mechanism of action of metformin, it is of interest to discuss the effect of this drug on the induction or inhibition of one of the types of regulated cell death - ferroptosis. The aim of this study is to summarize the data on the effect of metformin on the development of ferroptosis and the possible use of this drug in chemotherapy through the induction or inhibition of ferroptosis. The work used review and original publications indexed in MedLine, Cochrane Library, PubMed.
The literature accumulates data on the treatment of cancer by inducing ferroptosis. Metformin can reduce the risk of cancer in patients with type 2 diabetes and inhibit cell growth of various cancers, including pancreatic cancer, colon cancer, prostate cancer, ovarian cancer, and breast cancer. Induction of ferroptosis in cancer tissue appears to be optimal when bypassing chemoresistance. Metformin induces ferroptosis by acting on the miR-324-3p/GPX4 axis. For example, in liver cancer, the combination of metformin and sorafenib induces ferroptosis through the p62-Keap1-Nrf2 pathway. Cancer cells require significantly higher concentrations of iron ions for proliferation and progression. The involvement of metformin in iron-dependent cell death has been demonstrated using breast cancer as an example. Ferroptosis is triggered by iron-dependent lipid peroxidation and its regulation is actively assisted by the cystine-glutamate antiporter SLC7A11, which works in close interaction with glutathione peroxidase 4 and glutathione, which regulates peroxidation. The SLC7A11 antiporter regulates glutathione synthesis and these three factors play a key role in the implementation of ferroptosis. A feature of the action of metformin on ferroptosis processes is the relationship with the type of pathology, activation or inhibition of ferroptosis by this agent is intended to optimize biochemical processes. A number of studies are given as examples in which metformin causes inhibition of ferroptosis. In the future, precise verification of the metabolic pathways by which metformin induces or inhibits ferroptosis is of paramount importance for the effective treatment of a wide range of pathologies.
Keywords
Full Text

About the authors
A. A. Nikolaev
Astrakhan State Medical University of the Ministry of Health of the Russian Federation
Author for correspondence.
Email: chimnik@mail.ru
Dr.Sc. (Med.), Professor
Russian Federation, Bakinskaya str., 121, Astrakhan, 414000M. V. Ushakova
Astrakhan State Medical University of the Ministry of Health of the Russian Federation
Email: chimnik@mail.ru
Ph.D. (Biol.), Associate Professor
Russian Federation, Bakinskaya str., 121, Astrakhan, 414000M. V. Boskhomdzhieva
Budgetary institution of the Republic of Kalmykia "Republican Oncology Dispensary named after Timoshkaeva E.S."
Email: chimnik@mail.ru
Deputy Chief Physician for Medical Work
Russian Federation, Suseeva str. 17, Elista, Republic of Kalmykia, 358000References
- Graham G., Punt J., Arora M. et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011; 50(2): 81–98; https://doi.org/10.2165/11534750-000000000-00000.
- Pryor R., Cabreiro F. Repurposing metformin: An old drug with new tricks in its binding pockets. Biochem. J. 2015; 471(2): 307–322; https://doi.org/10.1042/BJ20150497.
- Rena G., Hardie D.G., Pearson E.R. The mechanisms of action of metformin. Diabetologia. 2017; 60(8): 1577–1585; https://doi.org/10.1007/s00125-017-4342-z.
- Hou W., Yin J., Alimujiang M. et al. Inhibition of mitochondrial complex I improves glucose metabolism independently of AMPK activation. J. Cell. Mol. Med. 2018; 22(7): 1316–1328; https://doi.org/10.1111/jcmm.13432.
- Shivaprakash P., Beeraka N.M., Madhunapantula S.R.V. et al. Metformin Effects on SHIP2, AMPKs and Gut Microbiota: Recent Updates on Pharmacology. Curr Med Chem. 2025; 32(9): 1732–1754. doi: 10.2174/0109298673289342240213040144.
- Николаев А.А., Ушакова М.В. Характеристика индукторов ферроптоза (обзор). Вопросы биологической, медицин-ской и фармацевтической химии. 2023; 26(6): 3–9; https://doi.org/10.29296/25877313-2023-06-00. [Nikolaev A.A., Ushakova M.V. Characteristics of ferroptosis inducers (review). Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himii. 2023; 26(6): 3–9. (in Russ.)].
- Bano I., Horky P., Abbas S.Q. et al. Ferroptosis: a New Road towards Cancer Management. Molecules. 2022; 27(6): 2129–2139; https://doi.org/10.3390/molecules27072129.
- Li Y., Yang Y., Yang U. Multifaceted roles of ferroptosis in Lung Diseases. Front Mol Biosci. 2022; 9(29): 919187–919208; https://doi.org/10.3389/fmolb.2022.919187.
- Skuli S., Alomari S., Gaitsch H., Bakayoko A. Metformin and Cancer, an ambiguanidous relationship. Pharmaceuticals (Basel Switzerland). 2022; 15(5): 626–641; https://doi.org/10.3390/ph15050626.
- Yousef M., Tsiani E. Metformin in Lung Cancer: review of in vitro and in vivo animal studies. Cancers (Basel). 2017; 9(1): 45–58; https://doi.org/10.3390/cancers9050045.
- Hsu S., Cheng C., Mgbeahuruike M. et al. New Insight into the Effects of Metformin on Diabetic Retinopathy, Aging and Cancer: nonapoptotic cell death, immunosuppression, and Effects beyond the AMPK pathway. Int J Mol Sci. 2021; 22(17): 9453–9471; https://doi.org/10.3390/ijms22179453.
- Hou Y., Cai S., Yu S., Lin H. Metformin induces ferroptosis by targeting miR-324-3p/GPX4 axis in breast cancer. Acta Biochim Biophys Sin. 2021; 53(3): 333–341; https://doi.org/10.1093/abbs/gmaa180.
- Tang K., Chen Q., Liu Y. et al. Combination of Metformin and Sorafenib induces ferroptosis of Hepatocellular Carcinoma through p62-Keap1-Nrf2 pathway. J Cancer. 2022; 13(11): 3234–3243; https://doi.org/10.7150/jca.76618.
- Deng C., Xiong L., Chen Y. et al. Metformin induces ferroptosis through the Nrf2/HO-1 signaling in lung cancer. BMC. Pulm Med. 2023; 23(1): 360–375; https://doi.org/10.1186/s12890-023-02655-6.
- Liu M., Kong X., Yao Y. The critical role and molecular mechanisms of ferroptosis in antioxidant systems: a narrative review. Ann Transl Med. 2022; 10(6): 368–381; https://doi.org/10.21037/atm-21-6942.
- Fan C., Wang Y., Liu Z. et al. Metformin exerts anticancer effects through the inhibition of the sonic hedgehog signaling pathway in breast cancer. Int J Mol Med. 2015; 36(1): 204–214; https://doi.org/10.3892/ijmm.2015.2217.
- Hassannia B., Vandenabeele P., Vanden B. Targeting Ferroptosis to Iron out Cancer. Cancer Cell. 2019; 35(6): 830–849; https://doi.org/10.1016/j.ccell.2019.04.002.
- Yang J., Zhou Y., Xie S. Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 2021; 40 (206): 1–20; https://doi.org/10.1186/s13046-021-02012-7.
- Rothman R., Serroni A., Farber J. Cellular pool of transient ferric iron, chelatable by deferoxamine and distinct from ferritin, that is involved in oxidative cell injury. Mol Pharmacol. 1992; 42(4): 703–710.
- Chen L., Hambright W., Na R., Ran Q. Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. J Biol Chem. 2015; 290(47): 28097–28106; https://doi.org/10.1074/-jbc.M115.680090.
- Lee J., Roh J.-L. SLC7A11 as a Gateway of Metabolic Perturbation and Ferroptosis Vulnerability in Cancer. Antioxidants 2022; 11(12): 2444–2461; https://doi.org/10.3390/antiox11122444.
- Deng C., Xiong L., Chen Y., Wu K., Wu J. Metformin induces ferroptosis through the Nrf2/HO-1 signaling in lung cancer. BMC Pulm Med. 2023; 23(1): 360–376; https://doi.org/10.1186/s12890-023-02655-6.
- Yifeng H., Shuang C., Shouyang Y., Hui L. Metformin induces ferroptosis by targeting miR-324-3p/GPX4 axis in breast cancer Acta Biochim Biophys Sin, 2021; 53(3): 333–349; https://doi.org/10.1093/abbs/gmaa180.
- Mo D., Liu S., Ma H. et al. Effects of acarbose and metformin on the inflammatory state in newly diagnosed type 2 diabetes patients: a one-year randomized clinical study. Drug Des Devel Ther. 2019; 13(8): 2769–2776; https://doi.org/10.2147/DDDT.S208327.
- Yuan X., Zhou Q., Zhang F. et al. Identification of immunity- and ferroptosis-related genes for predicting the prognosis of serous ovarian cancer. Gene. 2022; 838: 146701–146728; https://doi.org/10.1016/j.gene.2022.146701.
- Hou Y., Cai S., Yu S. , Lin H. Metformin induces ferroptosis by targeting miR-324-3p/GPX4 axis in breast cancer Acta Biochim Biophys Sin (Shanghai). 2021; 53(3): 333–341; https://doi.org/10.1093/abbs/gmaa180.
- Liu P., Feng Y., Li H. et al. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell Mol Biol Lett 2020; 25(1): 10–37; https://doi.org/10.1186/s11658-020-00205-0.
- Do M., Kim H., Choi J., Jeong H. Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1alpha/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radic Biol Med 2014; 74(1): 21–34; https://doi.org/10.1016/j.freeradbiomed.2014.06.010.
- Soriano A., Masanas M., Boloix A. et al. Functional high-throughput screening reveals miR-323a-5p and miR-342-5p as new tumor-suppressive microRNA for neuroblastoma. Cell Mol Life Sci 2019; 76 (9): 2231–2243; https://doi.org/10.1007/s00018-019-03041-4.
- Tang K., Chen Q., Liu Y. et al. Combination of Metformin and Sorafenib Induces Ferroptosis of Hepatocellular Carcinoma Through p62-Keap1-Nrf2 Pathway. Cancer. 2022; 13(11): 3234–3243; https://doi.org/10.7150/jca.76618. eCollection 2022.
- He Z., Yang J., Sui C. et al. FAM98A promotes resistance to 5-fluorouracil in colorectal cancer by suppressing ferroptosis. Arch Biochem Biophys. 2022; 722(12): 109216–109228; https://doi.org/10.1016/j.abb.2022.109216.
- Wang Z., Tao E., Chen Y. et al. NDUFA4 promotes the progression of head and neck paraganglioma by inhibiting ferroptosis. Biochem Cell Biol. 2023; 101(6): 523–530; https://doi.org/10.1139/bcb-2023-0018.
- Poznyak A., Litvinova L., Poggio P. et al. From Diabetes to Atherosclerosis: Potential of Metformin for Management of Cardiovascular Disease. Int J Mol Sci. 2022; 23(17): 9738–9752; https://doi.org/10.3390/ijms23179738.
- Xiong W., Sun K.Y., Zhu Y., et al. Metformin alleviates inflammation through suppressing FASN‑dependentpalmitoylation of Akt. Cell Death Dis. 2021; 12: 934–975. https://doi.org/10.1038/s41419-021-04235-0.
- Yan Y., Li T., Li Z. et al. Metformin suppresses the progress of diabetes‑accelerated atherosclerosis by inhibition of vascularsmooth muscle cell migration through AMPK‑Pdlim5 pathway.Front Cardiovasc Med 2021; 8: 690627–690688; https://doi.org/10.3389/fcvm.2021.690627.
- Zhao Y., Zhao Y., TianY., ZhouY. Metformin suppresses foam cell formation, inflammation and ferroptosis via the AMPK/ERK signaling pathway in ox LDL induced THP 1 monocytes. Exp Ther Med. 2022; 24(4): 636–649; https://doi.org/10.3892/etm.2022.11573.
- Мередов С.А., Асфандияров Ф.Р., Плосконос М.В., Николаев А.А. Индукторы ферроптоза в терапии рака простаты. Современные проблемы науки и образования. 2023; 23(6): 3–9. [Meredov S.A., Asfandiyarov F.R., Ploskonos M.V., Nikolaev A.A. Inductors of ferroptosis in prostate cancer therapy. Sovremennye problemy nauki i obrazovaniya. 2023; 26(6): 3–9. (in Russ.)]; https://doi.org/10.17513/spno.33155.
- Xu L., Li W., Chen Y. et al. Metformin Regulates Cardiac Ferroptosis to Reduce Metabolic Syndrome-Induced Cardiac Dysfunction. Appl Biochem Biotechnol. 2025 Jan; 197(1): 179–193. doi: 10.1007/s12010-024-05038-7.
- Li J., Fan B., Sun T. et al. Bioinformatics analysis of ferroptosis in spinal cord injury. Neural Regen Res 2023; 18(3): 626–633; https://doi.org/10.4103/1673-5374.350209.
- Wang Z., Zhou W., Zhang Z. et al. Metformin alleviates spinal cord injury by inhibiting nerve cell ferroptosis through upregulation of hemeoxygenase-1 expression. Neural Regen Res. 2024; 19(9): 2041–2049; https://doi.org/10.4103/1673-5374.390960.
- Lahnwong C., Palee S., Apaijai N. et al. Acute dapagliflozin administration exerts cardioprotective effects in rats with cardiac ischemia/reperfusion injury. Cardiovasc Diabetol. 2020; 19(1): 91–107; https://doi.org/10.1186/s12933-020-01066-9.
- Zhenhua Wu, Yunpeng Bai, Yujuan Qi et al. Metformin ameliorates ferroptosis in cardiac ischemia and reperfusion by reducing NOX4 expression via promoting AMPKα, Pharmaceutical Biolog 2023; 61(1): 886–896; https://doi.org/10.1080/13880209.2023.2212700.
- Tseng S., Huang Y., Chen H. et al. Metformin-mediated downregulation of p38 mitogen-activated protein kinase-dependent excision repair cross-complementing 1 decreases DNA repair capacity and sensitizes human lung cancer cells to paclitaxel. Biochem. Pharm. 2013; 85(3): 583–594; https://doi.org/10.1016/j.bcp.2012.12.001.
- Zou Z., Hu W., Kang F. et al. Interplay between lipid dysregulation and ferroptosis in chondrocytes and the targeted therapy effect of metformin on osteoarthritis. J Adv Res. 2024; 14: 2090-1232(24)00155-3. https://doi.org/10.1016/j.jare.2024.04.012.
- Zhang J., Qin Y., Zhang X. Needle-Free Injection of Metformin Ameliorates Skin Photoaging Through Inhibition of Ferroptosis and Oxidative Stress. Discov Med. 2024; 36(184): 1080–1090. doi: 10.24976/Discov.Med.202436184.100.
- Li S., Yu S., Mu Y., Wang K. et al. Metformin ameliorates PM2.5-induced functional impairment of placental trophoblasts by inhibiting ferroptosis. Nan Fang Yi Ke Da Xue Xue Bao. 2024; 44(3): 437–446; https://doi.org/10.12122/j.issn.1673-4254.2024.03.04.
Supplementary files
