Neuroprotective effect of Orostachys spinosa (L.) Sweet dry extract in cerebral ischemia in Wistar rats

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Intriduction. The neurodegenerative and cerebrovascular diseases are among the leading causes of disability all over the world and the second-largest risk factor for premature mortality. A perennial plant of the Crassulaceae family, Orostachys spinosa (L.) Sweet, deserves special attention in the prevention and comprehensive treatment of these diseases. Its aboveground parts are characterized by a metabolites diversity.

The aim of the study to evaluate the neuroprotective effect of Orostachys spinosa dry extract in cerebral ischemia/reperfusion in Wistar rats.

Material and methods. Сerebral ischemia was modeled by a five-minute occlusion of the common carotid arteries on Wistar rats.
O. spinosa extract at a dose of 100 mg/kg was administered for 14 days before modeling ischemia. After 48 hours the animals were tested in the "open field" and a conditioned passive avoidance reaction (CPAR) was developed. After 24 and 72 hours the neuron-specific enolase (NSE) level were determined in the blood serum and the growth factors (BDNF, GDNF and VEGFa) content in the brain cytolysate. Also histological studies of the brain were performed.

Research results. It has been established that O. spinosa extract increases the rearings and the animal movements number in the "open field", and also improves the development and maintenance of the CPAR. O. spinosa extract decreases the content of NSE and increases the concentration of growth factors in the brain cytolysate. O. spinosa extract decreases the number of pyknotic neurons by 24 and 30% (p <0.05) in the cerebral cortex and hippocampus, reduces the number of "shadow cells" by 20% (p <0.05).

Conclusion. O. spinosa dry extract has a neuroprotective effect during cerebral ischemia/reperfusion.

Full Text

Restricted Access

About the authors

Ya. G. Razuvaeva

Institute of General and Experimental Biology of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: tatur75@mail.ru
ORCID iD: 0000-0001-7829-1424
SPIN-code: 8338-9336

Dr.Sc. (Biol.), Senior Research Scientist, Laboratory of Bioactive Compounds Safety

Russian Federation, Sakh’yanovoy Str., 6, Ulan-Ude, 670047

A. A. Toropova

Institute of General and Experimental Biology of the Siberian Branch of the Russian Academy of Sciences

Email: anyuta-tor@mail.ru
ORCID iD: 0000-0003-2618-7777
SPIN-code: 4457-1872

Ph.D. (Biol.), Senior Research Scientist, Laboratory of Bioactive Compounds Safety

Russian Federation, Sakh’yanovoy Str., 6, Ulan-Ude, 670047

E. A. Bayandueva

Institute of General and Experimental Biology of the Siberian Branch of the Russian Academy of Sciences

Email: baynduev@mail.ru
ORCID iD: 0009-0009-4748-0068
SPIN-code: 7977-9147

Post-graduate Student, Laboratory of Bioactive Compounds Safety

Russian Federation, Sakh’yanovoy Str., 6, Ulan-Ude, 670047

I. G. Nikolaeva

Institute of General and Experimental Biology of the Siberian Branch of the Russian Academy of Sciences

Email: i-nik@mail.ru
ORCID iD: 0000-0002-3476-1014
SPIN-code: 8001-5544

Dr. Sc. (Pharm.), Senior Research Scientist, Laboratory of Bioactive Compounds Safety

Russian Federation, Sakh’yanovoy Str., 6, Ulan-Ude, 670047

E. A. Ubeeva

Banzarov Buryat State University

Email: ubeeva.elena@gmail.com
ORCID iD: 0000-0002-9835-2279
SPIN-code: 1831-7155

Ph.D. (Med.), Associate Professor of Medical Institute

Russian Federation, Smolina Str., 24A, Ulan-Ude, 670000

References

  1. Fan J., Li X., Yu X., et al. Global burden, risk factor analysis, and prediction study of ischemic stroke, 1990–2030. Neurology. 2023; 101 (2): e137–e150. doi: 10.1212/WNL.0000000000207387.
  2. Feigin V.L., Brainin M., Norrving B., et al. World Stroke Organization (WSO): Global stroke fact sheet 2022. International journal of stroke. 2022; 17 (1): 18–29. doi: 10.1177/17474930211065917.
  3. Szejko N., Macul Ferreira de Barros P., Avila-Quintero V.J., et al. Parental age and the risk for Alzheimer’s disease in offspring: Systematic review and meta-analysis. Dementia and geriatric cognitive disorders extra. 2021; 11 (2): 140–150. doi: 10.1159/000515523.
  4. Guzzon A., Rebba V., Paccagnella O., et al. The value of supportive care: A systematic review of cost-effectiveness of non-pharmacological interventions for dementia. PLoS One. 2023; 18 (5): e0285305. doi: 10.1371/journal.pone.0285305.
  5. Nikolaeva I.G., Tsybiktarova L.P., Nikolaeva G.G., Manzhigeev P.G. Phytochemical study of the aboveground part of the spiny mountain ash. Quality assurance issues for medicines. 2018; 22 (4): 52–56.
  6. Plant resources of Russia: Wild flowering plants, their component composition and biological activity. Vol. 2. Families Actinidiaceae – Malvaceae, Euphorbiaceae – Haloragaceae. Ed. A.L. Budantsev. SPb.; M.: Partnership of Scientific Publications KMK, 2009; 513 p.
  7. Nikolaeva I.G., Tsybiktarova L.P., Taraskin V.V., et al. Lipids from Orostachys spinosa. Chemistry of Natural Compounds. 2018; 54 (5): 961–963. doi: 10.1007/s10600-018-2522-9.
  8. Budantsev A.L., Lesiovskaya E.E. Wild useful plants of Russia. St. Petersburg: SPFHA, 2001; 663 p.
  9. Odinets A.D., Usov L.A., Izatulin A.V. et al. Influence of preparations from Orostachys spinosa and Rhododendron adamsii on the course of stress reaction in experimental animals. Bulletin of the VSRC SB RAMS. 2010; 76 (6): 175–181.
  10. Odinets A.D., Leventa A.I., Shchukin D.A., et al. On the antihypoxic effect of preparations from plant materials of Baikal Siberia. Siberian medical journal (Irkutsk). 2011; 104 (5): 112–115.
  11. Usov L.A., Leventa A.I., Odinets A.D. Anxiolytic and mnemotropic effects of extracts from Orostachys spinosa and Rhododendron adamsii in an experiment on laboratory animals. Siberian medical journal (Irkutsk). 2010; 96 (5): 125 –128.
  12. Patent 2784435 (Russian Federation). Method for obtaining a product with neuroprotective and immunomodulatory activity. I.G. Nikolaeva, V.B. Khobrakova, Ya.G. Razuvaeva, et al.; applicant and patent holder FGBUN IOEB SB RAS. – No. 022113385; declared 18.05.2022; published 25.11.2022. Bull. № 33.
  13. Razuvaeva Ya.G., Bayandueva E.A., Toropova A.A., Nikolaeva I.G. Evaluation of the anti-ischemic effect of dry Orostachys spinosa extract in bilateral occlusion of common carotid arteries in white rats. Issues of Biological, Medical and pharmaceutical chemistry. 2022; 25(7): 3−8. doi: 10.29296/25877313-2022-07-01.
  14. Razuvaeva Ya.G., Toropova A.A., Bayandueva E.A., Nikolaeva I.G. Study of neuroprotective properties of Orostachys spinosa dry extract in cholinergic insufficiency. Acta Biomedica Scientifica. 2024; 9(3): 213–221. doi: 10.29413/ABS.2024-9.3.21.
  15. Guidelines for conducting preclinical studies of drugs. Part one. Ed. by A.N. Mironov. Moscow: Grif i K. 2012; 944 p.
  16. Babkina A.S., Yadgarov M.Y., Ostrova I.V., et al. Serum levels of VEGF-A and its receptors in patients in different phases of hemorrhagic and ischemic strokes. Curr. Issues Mol. Biol. 2022; 44: 4888–4901. doi: 10.3390/cimb44100332.
  17. Moon S., Chang M.-S., Koh S.-H., et al. Repair mechanisms of the neurovascular unit after ischemic stroke with a focus on VEGF. Int. J. Mol. Sci. 2021; 22: 8543. doi: 10.3390/ijms22168543.
  18. Li J., Xiang H., Huang C., Lu J. Pharmacological actions of myricetin in the nervous system: A comprehensive review of preclinical studies in animals and cell models. Frontiers in pharmacology. 2021; 12: 797298. doi: 10.3389/fphar.2021.797298.
  19. Shimada Y., Sato Y., Kumazoe M., et al. Myricetin improves cognitive function in SAMP8 mice and upregulates brain-derived neurotrophic factor and nerve growth factor. Biochemical and biophysical research communications. 2022; 616: 33–40. doi: 10.1016/j.bbrc.2022.05.039.
  20. Wang Q.M., Wang G.L., Ma Z.G. Protective effects of myricetin on chronic stress-induced cognitive deficits. Neuroreport. 2016; 27 (9): 652–658. doi: 10.1097/WNR.0000000000000591.
  21. Xu D., Hu M.J., Wang Y.Q., Cui Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules. 2019; 24 (6): 1123. doi: 10.3390/molecules24061123.
  22. Yao Z.H., Yao X.L., Zhang Y., et al. Luteolin could improve cognitive dysfunction by inhibiting neuroinflammation. Neurochemical Research. 2018; 43: 806–820. doi: 10.1007/s11064-018-2482-2.
  23. Cheng N., Bell L., Lamport D.J., Williams C.M. Dietary flavonoids and human cognition: A meta-analysis. Molecular nutrition & food research. 2022; 66: 2100976. doi: 10.1002/mnfr.202100976.
  24. Asgharzade S., Khorrami M.B., Forouzanfar F. Neuroprotective effect of herniarin following transient focal cerebral ischemia in rats. Metabolic brain disease. 2021; 36: 2505–2510. doi: 10.1007/s11011-021-00841-1.
  25. Barchestani Z.N., Rafieirad M. The Effect of herniarin on spatial working memory, pain threshold, and oxidative stress in ischemic hypoperfusion model in rats. Caspian journal of neurological sciences. 2021; 7 (1): 42–50. doi: 10.32598/CJNS.7.24.5.
  26. Liang S., Zhen Z., Li H., et al. Neuroprotective effect of umbelliferone against cerebral ischemia/reperfusion induced neurological deficits: in-vivo and in-silico. Journal of biomolecular structure and dynamics. 2021; 39(13): 4715–4725. doi: 10.1080/07391102.2020.1780153.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of O. spinosa extract on the neuron-specific enolase level in the blood serum of Wistar rats during cerebral ischemia/reperfusion. From here on, differences are significant at p≤0.05 compared to the data of animals: # – positive control; * – negative control

Download (38KB)
3. Fig. 2. Effect of O. spinosa extract on the growth factors level in the brain cytolysate of Wistar rats during cerebral ischemia/reperfusion: a – BDNF; б – GDNF; в – VEGFa

Download (151KB)
4. Fig. 3. Effect of O. spinosa extract on the duration of the latent period in Wistar rats with cerebral ischemia/reperfusion

Download (63KB)
5. Fig. 4. Micrographs of the cerebral cortex of Wistar rats during cerebral ischemia/reperfusion: а – control; б – O. spinosa extract; в – G. biloba extract (stained with cresyl violet according to Nissl; magnification x 200)

Download (285KB)
6. Fig. 5. Effect of O. spinosa extract on morphometric parameters of the cerebral cortex of Wistar rats during cerebral ischemia/reperfusion

Download (52KB)

Copyright (c) 2025 Russkiy Vrach Publishing House