Получение молекулярно импринтированного полимера на основе производных акриловой кислоты для изолирования производных пирролидинофенона из биологических жидкостей


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Цель работы. Получение сорбента, представляющего собой молекулярно импринтированный полимер на основе производных акриловой кислоты, селективного к соединениям класса пирролидинофенонов. Материал и методы. Сорбенты получали методом радикальной полимеризации метакриловой кислоты, акриламида, N,N'-метилен-бис-акриламида, диаллиламина в присутствии темплата (молекулы-шаблона) - фенилпирацетама. При получении варьировали количеством используемого акриламида и N,N'-метилен-бис-акриламида. Для полученных сорбентов определяли степень набухания в воде и изопропиловом спирте, импринтинг-фактор, коэффициент перекрестного реагирования и степень извлечения фенилпирацетама из водных растворов. Результаты. Исследование степени набухания полученных сорбентов показало, что объемное набухание в воде и органических растворителях повышается при увеличении содержания акриламида и уменьшении N,N'-метилен-бис-акриламида. Объемное набухание в воде всех полученных сорбентов ниже, чем в изопропиловом спирте, что позволяет использовать их для сорбции анализируемых веществ из водной среды и последующей десорбции. Величина импринтинг-фактора пофенилпирацетаму для образца сорбента, содержащего 56% акриламида, была на 47% выше, чем для образца, содержащего 44% акриламида. Низкая величина импринтинг-факгора всех образцов сорбентов при исследовании циннаризина и амитриптилина свидетельствует о том, что полученные сорбенты содержат «молекулярные отпечатки» темплата - фенилпирацетама. Вышеуказанные образцы сорбента способны распознавать фенилпирацетам в бинарных смесях, что подтверждает наличие центров селективного связывания. Степень извлечения фенилпирацетама из водных растворов с использованием образца сорбента, содержащего 56% акриламида, составила 89± 17%. Исследование структуры вышеуказанного образца сорбента методом ИК-спектрометрии с Фурье-преобразованием выявило наличие выраженных пиков при 1451, 1660, 2934, 3198, 3343 см1, что свидетельствует о наличии карбоксимодифицированной полиакриламидной матрицы сорбента. Выводы. Получен молекулярно импринтированный полимер на основе производных акриловой кислоты, который является стабильным в водной среде и изопропиловом спирте. Данный полимерный сорбент проявляет высокий уровень селективности к производным пирролидинофенона, что доказано в эксперименте с модельным соединением фенилпирацетамом. Данный полимерный сорбент может быть использован для пробоподготовки биологических жидкостей при исследовании на производные пирролидинофенона.

Полный текст

Доступ закрыт

Об авторах

А. В Воронин

ФГБОУ «Самарский государственный медицинский университет» Министерства здравоохранения РФ

д.фарм.н., доцент Самара

И. В Сынбулатов

ФГБОУ «Самарский государственный медицинский университет» Министерства здравоохранения РФ

Email: i.v.synbulatov@samsmu.ru
аспирант Самара

Список литературы

  1. Сынбулатов И.В., Воронин А.В., Воронина Т.В. Анализ производных пирролидинофенона в биологических жидкостях. Аспирантский вестник Поволжья. 2019; 12:33-40. https://doi.org/10.17816/2072-2354.2019. 19.1.33-40.
  2. Дмитриенко С.Г. Влияние соотношения функциональный мономер-темплат в предполимеризационной смеси на сорбционные свойства полимеров с молекулярными отпечатками органических соединений. Вестник Московского университета. 2006; 3: 210-217.
  3. Постановление правительства Российской Федерации «Об утверждении перечня наркотических средств, психотропных веществ и их прекурсоров, подлежащих контролю в Российской Федерации» от 30 июня 1998 г. № 681 с изм. и допол. в ред. постановления Правительства РФ от 25.02.2011 № 112.
  4. Сынбулатов И.В. Компьютерное моделирование физикохимических и биологических свойств наркотических средств и психоактивных веществ группы пирролидинофенона. «Молодая фармация - потенциал будущего». СПб. 2018. С. 131-133.
  5. Komiyama M, Takeuchi T., Mukawa T., Asanuma H. Molecular Imprinting: From Fundamentals to Applications. By Wiley-VCH Verlag GmbH & Co. Kga A. 2003; 159-147.
  6. Попов А.Ю. Синтез и физико-химические свойства сверхсшитых полистирольных материалов органического доступа. Высокомолекулярные соединения. 2018; 5:408415.
  7. Мелентьев А.Б. Скрининг лекарственных, наркотических веществ и их метаболитов методом газовой хроматографии с масс-селективным детектором. Проблемы экспертизы в медицине. 2002; 4: 15-21.
  8. Государственная Фармакопея Российской Федерации. XIV изд. М.: МЗ РФ. 2018. Т. 1. URL: http://femb.ru/femb/phar-macopea.php (дата обращения 20.09.2020 г.).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ИД "Русский врач", 2020

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах