MicroRNA-30a-5p as a target for pharmacological correction of pathological conditions of the nervous system

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

In the brain, the main inducers of neuroinflammation are proinflammatory cytokines, chemokines, reactive oxygen species and other mediators produced by microglia, astrocytes and endothelial cells. Chronic neuroinflammatory conditions are manifested by the infiltration of peripheral immune cells through the blood-brain barrier and cause tissue damage in the central nervous system, promoting glial activation and increasing the permeability of the blood-brain barrier. According to a number of studies, one of the regulators of these processes is small non-coding RNA, or microRNA, which can either contribute to disease progression or, conversely, reflect an attempt by the nervous system to prevent excessive damage and restore homeostasis. Studying the role of microRNA. miR-30a-5p among others, in these processes can shed light on the pathogenetic mechanisms underlying a number of neurological diseases and lead to the discovery of new therapeutic agents. In this review, we discuss the role of miR-30a-5p in the regulation of pro- and anti-inflammatory cytokine gene expression, possible mechanisms of its action, and the use of miR-30a-5p as a potential therapeutic target for pharmacological correction of neuroinflammation in pathological conditions of the nervous system.

全文:

受限制的访问

作者简介

Marat Airapetov

Institute of Experimental Medicine; Kirov Military Medical Academy

编辑信件的主要联系方式.
Email: interleukin1b@gmail.com
ORCID iD: 0000-0002-8318-9069
SPIN 代码: 5982-4075

MD, Cand. Sci. (Medicine), Assistant Professor

俄罗斯联邦, 12, Akademika Pavlova st., Saint Petersburg, 197022; 6, Akademika Lebedeva st., Saint Petersburg, 194044

Sergei Eresko

Institute of Experimental Medicine; North-West State Medical University named after I.I. Mechnikov

Email: eresko.sergei@yandex.ru
ORCID iD: 0000-0002-0269-6078
SPIN 代码: 4096-2798
俄罗斯联邦, 12, Akademika Pavlova st., Saint Petersburg, 197022; 41, Kirochnaya st. 191015 Saint Petersburg

Sofiya Shamayeva

Institute of Experimental Medicine

Email: interleukin1b@gmail.com
俄罗斯联邦, 12, Akademika Pavlova st., Saint Petersburg, 197022

Andrei Lebedev

Institute of Experimental Medicine

Email: aalebedev-iem@rambler.ru
ORCID iD: 0000-0003-0297-0425
SPIN 代码: 4998-5204

MD, Dr. Sci. (Biology), Professor

俄罗斯联邦, 12, Akademika Pavlova st., Saint Petersburg, 197022

Evgenii Bychkov

Institute of Experimental Medicine

Email: bychkov@mail.ru
ORCID iD: 0000-0002-8911-6805
SPIN 代码: 9408-0799

Dr. Sci. (Medicine)

俄罗斯联邦, 12, Akademika Pavlova st., Saint Petersburg, 197022

Petr Shabanov

Institute of Experimental Medicine

Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN 代码: 8974-7477

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, 12, Akademika Pavlova st., Saint Petersburg, 197022

参考

  1. Chen S, Dong Z, Cheng M, et al. Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. Neuroinflammation. 2017;14:187. doi: 10.1186/s12974-017-0963-x
  2. Xanthos DN, Sandkühler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci. 2014;15:43–53. doi: 10.1038/nrn3617
  3. Balistreri CR, Monastero R. Neuroinflammation and neurodegenerative diseases: How much do we still not know? Brain Sci. 2023;14(1):19. doi: 10.3390/brainsci14010019
  4. Shabab T, Khanabdali R, Moghadamtousi SZ, et al. Neuroinflammation pathways: a general review. Int J Neurosci. 2017;127(7):624–633. doi: 10.1080/00207454.2016.1212854
  5. Airapetov MI, Eresko SO, Lebedev AA, et al. Involvement of TOLL-like receptors in the neuroimmunology of alcoholism. Biomeditsinskaya Khimiya. 2020;66(3):208–215. EDN: NHDJTU doi: 10.18097/PBMC20206603208
  6. Tandon PN. The enigma of neuroinflammation. Neurol India. 2017;65(4):703–705. doi: 10.4103/neuroindia.NI_517_17
  7. Brown CM, Mulcahey TA, Filipek NC, Wise PM. Production of proinflammatory cytokines and chemokines during neuroinflammation: novel roles for estrogen receptors α and β. Endocrinology. 2010;151(10):4916–4925. doi: 10.1210/en.2010- 0371
  8. Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–1167. doi: 10.1089/ ars.2012.5149
  9. Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353(6301):777–783. doi: 10.1126/science.aag2590
  10. Ferro A, Auguste YSS, Cheadle L. Microglia, cytokines, and neural activity: unexpected interactions in brain development and function. Front Immunol. 2021;12:703527. doi: 10.3389/fimmu.2021.703527
  11. Chen O, Luo X, Ji R-R. Macrophages and microglia in inflammation and neuroinflammation underlying different pain states. Med Rev. 2023;3(5):381–407. doi: 10.1515/mr-2023-0034
  12. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139(S2):136–153. doi: 10.1111/jnc.13607
  13. Kempuraj D, Thangavel R, Natteru PA, et al Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine. 2016;1:1003.
  14. Carthew RW, Sontheimer EJ. Origins and mechanisms of MiRNAs and SiRNAs. Cell. 2009;136(4):642–655. doi: 10.1016/j.cell.2009.01.035
  15. Ha M, Kim VN. Regulation of MicroRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–524. doi: 10.1038/nrm3838
  16. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13:1097–1101. doi: 10.1038/nsmb1167
  17. Benoit MPMH, Imbert L, Palencia A, et al. The RNA-binding region of human TRBP interacts with microRNA precursors through two independent domains. Nucleic Acids Res. 2013;41(7):4241–4252. doi: 10.1093/nar/gkt086
  18. Marinaro F, Marzi MJ, Hoffmann N, et al. MicroRNA-independent functions of DGCR8 are essential for neocortical development and TBR1 expression. EMBO Rep. 2017;18(4):603–618. doi: 10.15252/embr.201642800
  19. Macias S, Cordiner RA, Cáceres JF. Cellular functions of the microprocessor. Biochem Soc Trans. 2013;41(4):838–843. doi: 10.1042/BST20130011
  20. Song M-S, Rossi JJ. Molecular mechanisms of Dicer: endonuclease and enzymatic activity. Biochem J. 2017;474(10):1603–1618. doi: 10.1042/BCJ20160759
  21. Meijer HA, Smith EM, Bushell M. Regulation of miRNA strand selection: follow the leader? Biochem Soc Trans. 2014;42(4):1135–1140. doi: 10.1042/BST20140142
  22. Janas MM, Wang B, Harris AS, et al. Alternative RISC assembly: binding and repression of microRNA-mRNA duplexes by human Ago proteins. RNA. 2012;18(11):2041–2055. doi: 10.1261/rna.035675.112
  23. Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42:217–239. doi: 10.1146/annurev-biophys-083012-130404
  24. Gorski SA, Vogel J, Doudna JA. RNA-based recognition and targeting: Sowing the seeds of specificity. Nat Rev Mol Cell Biol. 2017;18:215–228. doi: 10.1038/nrm.2016.174
  25. Park JH, Shin C. MicroRNA-directed cleavage of targets: mechanism and experimental approaches. BMB Rep. 2014;47(8):417–423. doi: 10.5483/bmbrep.2014.47.8.109
  26. Zaporozhchenko IA, Rykova EY, Laktionov PP. The Fundamentals of miRNA Biology: Structure, Biogenesis, and Regulatory Functions. Russ J Bioorg Chem. 2020;46:1–13. doi: 10.1134/S106816202001015X
  27. Fabian MR, Sonenberg N, Filipowicz W. Regulation of MRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–379. doi: 10.1146/annurev-biochem-060308-103103
  28. Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian MRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. doi: 10.1101/gr.082701.108
  29. Kozomara A, Birgaoanu M, Griffiths-Jones S. MiRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):155–162. doi: 10.1093/nar/gky1141
  30. Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human MiRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 2013;153(3):654–665. doi: 10.1016/j.cell.2013.03.043
  31. Bayraktar R, Van Roosbroeck K, Calin GA. Cell-to-cell communication: MicroRNAs as hormones. Mol Oncol. 2017;11(12):1673–1686. doi: 10.1002/1878-0261.12144
  32. Vishnoi A, Rani S. MiRNA biogenesis and regulation of diseases: an overview. In: Rani S., editor. MicroRNA profiling. Methods in molecular biology. Vol. 2595. New York: Humana; P. 1–10. doi: 10.1007/978-1-0716-2823-2_1
  33. Tanigawa K, Misono S, Mizuno K, et al. MicroRNA signature of small-cell lung cancer after treatment failure: impact on oncogenic targets by miR-30a-3p control. Mol Oncol. 2023;17(2):328–343. doi: 10.1002/1878-0261.13339
  34. Wang X, Zhao H, Wang P, et al. MiR-30a-5p/CHD1 axis enhances cisplatin sensitivity of ovarian cancer cells via inactivating the Wnt/β-catenin pathway. Anticancer Drugs. 2022;33(10):989–998. doi: 10.1097/CAD.0000000000001397
  35. Du L, Wang B, Wu M, et al. LINC00926 promotes progression of renal cell carcinoma via regulating miR-30a-5p/SOX4 axis and activating IFNγ-JAK2-STAT1 pathway. Cancer Lett. 2023;578:216463. doi: 10.1016/j.canlet.2023.216463
  36. Xie L, Wei J, Gao Z, et al. Significance of a tumor microenvironment-mediated P65-miR-30a-5p-BCL2L11 amplification loop in multiple myeloma. Exp Cell Res. 2022;415(1):113113. doi: 10.1016/j.yexcr.2022.113113
  37. Outeiro-Pinho G, Barros-Silva D, Aznar E, et al. MicroRNA-30a-5pme: a novel diagnostic and prognostic biomarker for clear cell renal cell carcinoma in tissue and urine samples. Exp Clin Cancer Res. 2020;39:98. doi: 10.1186/s13046-020-01600-3
  38. Jiang L-h, Zhang H-d, Tang J-h. MiR-30a: A novel biomarker and potential therapeutic target for cancer. J Oncol. 2018;5167829. doi: 10.1155/2018/5167829
  39. Ma Y, Lin H, Wang P, et al. A miRNA-based gene therapy nanodrug synergistically enhances pro-inflammatory antitumor immunity against melanoma. Acta Biomater. 2023;155:538–553. doi: 10.1016/j.actbio.2022.11.016
  40. Wieghofer P, Prinz M. Genetic manipulation of microglia during brain development and disease. Biochim Biophys Acta Mol Basis Dis. 2016;1862(3):299–309. doi: 10.1016/j.bbadis.2015.09.019
  41. Kabba JA, Xu Y, Christian H, et al. Microglia: Housekeeper of the central nervous system. Cell Mol Neurobiol. 2018;38:53–71. doi: 10.1007/s10571-017-0504-2
  42. Pettas S, Karagianni K, Kanata E, et al. Profiling microglia through single-cell RNA sequencing over the course of development, aging, and disease. Cells. 2022;11(15):2383. doi: 10.3390/cells11152383
  43. Long Y, Li X-q, Deng J, et al. Modulating the polarization phenotype of microglia — A valuable strategy for central nervous system diseases. Ageing Res Rev. 2024;93:102160. doi: 10.1016/j.arr.2023.102160
  44. Choi H-R, Ha JS, Kim E-A, et al. MiR-30a-5p and miR-153-3p regulate LPS-induced neuroinflammatory response and neuronal apoptosis by targeting NeuroD1. BMB Rep. 2022;55(9):447–452. doi: 10.5483/BMBRep.2022.55.9.061
  45. Fu X, Shen Y, Wang W, Li X. MiR-30a-5p ameliorates spinal cord injury-induced inflammatory responses and oxidative stress by targeting Neurod 1 through MAPK/ERK signaling. Clin Exp Pharmacol Physiol. 2018;45(1):68–74. doi: 10.1111/1440-1681.12856
  46. Hu W, Zhou J, Jiang Y, et al. Silencing of LINC00707 alleviates brain injury by targeting miR-30a-5p to regulate microglia inflammation and apoptosis. Neurochem Res. 2024;49(1):222–233. doi: 10.1007/s11064-023-04029-0
  47. Zhao P, Wang M, An J, et al. A positive feedback loop of miR-30a-5p-WWP1-NF-κB in the regulation of glioma development. Biochem Cell Biol. 2019;112:39–49. doi: 10.1016/j.biocel.2019.04.003
  48. Barzegar Behrooz A, Latifi-Navid H, da Silva Rosa SC, et al. Integrating multi-omics analysis for enhanced diagnosis and treatment of glioblastoma: A comprehensive data-driven approach. Cancers (Basel). 2023;15(12):3158. doi: 10.3390/cancers15123158
  49. Sun T, Zhao K, Liu M, et al. miR-30a-5p induces Aβ production via inhibiting the nonamyloidogenic pathway in Alzheimer’s disease. Pharmacol Res. 2022;178:106153. doi: 10.1016/j.phrs.2022.106153
  50. Rivera J, Sharma B, Torres MM, Kumar S. Factors affecting the GABAergic synapse function in Alzheimer’s disease: Focus on microRNAs. Ageing Res Rev. 2023;92:102123. doi: 10.1016/j.arr.2023.102123
  51. Murinello S, Usui Y, Sakimoto S, et al. miR-30a-5p inhibition promotes interaction of Fas+ endothelial cells and FasL+microglia to decrease pathological neovascularization and promote physiological angiogenesis. Glia. 2019;67(2):332–344. doi: 10.1002/glia.23543
  52. Mussa BM, Taneera J, Mohammed AK, et al. Potential role of hypothalamic microRNAs in regulation of FOS and FTO expression in response to hypoglycemia. Physiol Sci. 2019;69(6):981–991. doi: 10.1007/s12576-019-00718-0

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 84654 от 01.02.2023 г