Comparative characteristics of the susceptibility of Kupffer cells and macrophages of bone-background origin to activation factors


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. In mammals, there are several populations of macrophages, developing from bone marrow progenitors and resident macrophages, developing from the embryonic precursors of the yolk. One of the reasons for the coexistence of several populations of macrophages may be their different role in inflammatory responses, which is associated with different susceptibility to activation factors. The aim of the study. To compare the susceptibility of macrophages of bone marrow and embryonic origin to the activation factors of M1- and M2-phenotypes. Materials and methods. As macrophages of embryonic origin, Kupffer cells of the liver were studied, they were compared with macrophages of monocytic (bone marrow) origin, obtained from intact male Wistar rats. Results. Gene expression of cytokines IL1b, IL6, and TNFa in Kupffer cells was found to increase only under the influence of elevated concentrations of LPS (100 ng/ml) or IL4 (40 ng/ml) and IL10 (40 ng/ml), except for the IL10 gene, the expression of which in liver macrophages increased under the influence of a medium containing 50 ng/ml LPS. The expression of the cytokine genes IL1b, IL6, IL10, and TNFa in monocytic macrophages increased under the influence of minimal concentrations of LPS (50 ng/ml) or IL4 (20 ng/ml) and IL10 (20 ng/ml). Conclusion. Kupffer cells and monocytic macrophages response to different inductors in a similar way and they simultaneously increase the expression of both pro-and anti-inflammatory markers. At the same time, macrophages of bone marrow (monocytic) origin in general compared with resident liver macrophages are more prone to activation factors, and especially to endotoxin, which is likely due to the development of LPS tolerance in Kupffer cells.

Full Text

Restricted Access

About the authors

A. V Lokhonina

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology

A. V Elchaninov

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology

A. V Makarov

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology

M. P Nikitina

Scientific Research Institute of Human Morphology

D. V Goldshtein

Research Center of Medical Genetics

M. A Paltsev

M.V. Lomonosov Moscow State University

Center for Immunology and Molecular Biophysics

T. Kh Fatkhudinov

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology

Email: fatkhudinov@gmail.com

References

  1. Bilzer M., Roggel F., Gerbes A.L. Role of Kupffer cells in host defense and liver disease Role of Kupffer cells in host defense and liver disease. Liver International. 2006; 26: 1175-86. https://doi.org/10.111Vj.1478 3231.2006.01342.x
  2. You Q., Holt M., Yin H., Li G., Hu C.J., Ju C. Role of hepatic resident and infiltrating macrophages in liver repair after acute injury. Biochem. Pharmacol. 2013; 86 (6): 836-43. https://doi.org/10.10Wj. bcp.2013.07.006
  3. Elchaninov A.V, Fatkhudinov T.Kh., Usman N.Y, Kananykhina E.Y, Arutyunyan I.V, Makarov A.V., Lokhonina A.V., Eremina I.Z., Surovtsev V.V., Goldshtein D.V, Bolshakova G.B., Glinkina V.V., Sukhikh G.T. Dynamics of macrophage populations of the liver after subtotal hepatectomy in rats. BMC Immunol. 2018; 19 (1): 23. https://doi. org/10.1186/s12865-018-0260-1
  4. Лохонина А.В., Покусаев А.С., Ельчанинов А.В., Арутюнян И.В., Макаров А.В., Еремина И.З., Суровцев В.В., Большакова ГБ., Гольдштейн Д.В., Фатхудинов Т.Х. Характеристика иммунофенотипа резидентных макрофагов печени и профиля экспрессируемых генов. Клиническая и экспериментальная морфология. 2018; 1 (25): 49-60
  5. Лохонина А.В., Ельчанинов А.В., Арутюнян И.В., Покусаев А.С., Макаров А.В., Еремина И.З., Суровцев В.В., Большакова Г.Б., Гольдштейн Д.В., Фатхудинов Т.Х. Морфофункциональная характеристика макрофагов эмбрионального и моноцитарного происхождения. Гены & Клетки. 2018; 2 (13): 56-62 https://doi. org/10.23868/201808020
  6. Martinez F.O., Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014; 6: 13. https://doi.org/10.12703/P6-13
  7. Jablonski K.A., Amici S.A., Webb L.M., Ruiz-Rosado J.deD., Popovich P.G., Partida-Sanchez S., Guerau-de-Arellano M. Novel markers to delineate murine M1 and M2 macrophages. PLoS One. 2015; 10 (12): e0145342. https://doi.org/10.1371/journal. pone.0145342
  8. Epelman S., Lavine K.J., Randolph G.J. Origin and functions of tissue macrophages. Immunity 2014; 41 (1): 21-35. https://doi. org/10.1016/j.immuni.2014.06.013
  9. Guilliams M., Scott C.L. Does niche competition determine the origin of tissue-resident macrophages? Nat Rev Immunol. 2017; 7: 451-60. https://doi.org/10.1038/nri.2017.42
  10. West M.A., Heagy W. Endotoxin tolerance: A review. Crit Care Med. 2002; 30: 64-73.
  11. Liu D., Cao S., Zhou Y, Xiong YJ. Recent advances in endotoxin tolerance. Cell Biochem. 2019; 120 (1): 56-70. https://doi. org/10.1002/jcb.27547
  12. Michalopoulos G.K. Advances in liver regeneration. Expert. Rev. Gastroenterol. Hepatol. 2014; 8 (8): 897-907. https://doi.or g/10.1586/17474124.2014.934358
  13. Qin H., Roberts K.L., Niyongere S.A., Cong Y, Elson C.O., Benveniste E.N. J. Immunol. 2007; 179 (9): 5966-76. Molecular mechanism of lipopolysaccharide-induced SOCS-3 gene expression in macrophages and microglia. https://doi.org/10.4049/jim-munol.179.9.5966
  14. Nimah M., Zhao B., Denenberg A.G., Bueno O., Molkentin J., Wong H.R., Shanley T.P. Contribution of MKP-1 regulation of p38 to endotoxin tolerance. Shock. 2005; 23 (1): 80-7. https://doi.org/10.1097/01. shk.0000145206.28812.60

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies