Determination of the diffusion coefficient for the drug Rivanol in the human buccal mucosa in vitro


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Dyes have long been successfully used in medicine as exogenous chromophores to increase the effectiveness of the interaction of light with biological tissues, as contrast agents and photosensitizers in diagnosis and photodynamic therapy. At present, the current area of medicine is the development of methods for photodynamic therapy, both for the treatment of cancer pathologies and for antibacterial anti-inflammatory procedures, which can effectively influence resistant strains of microorganisms. The aim of the study. The work is devoted to the determination of the effective diffusion coefficient of the preparation Rivanol in the human buccal mucosa in vitro using the method of optical spectroscopy of diffuse reflection with the usage of the model of free diffusion. The active ingredient of the pharmaceutical preparation Rivanol is ethacridine lactate - acridine low toxic dye with antiseptic and photosensitizing properties, the solution of which has absorption bands in the UV/visible range of320-450 nm, as well as fluorescence in the green. Methods. In this work, the determination of the effective diffusivity of Rivanol in biological tissue was based on measuring the kinetics of changes in the diffuse reflectance spectrum and estimating the effective optical density when fitting experimental data using the equation obtained from the second Fick law and the Beer-Lambert-Bouguer law. Results. For the first time, an effective in vitro diffusion coefficient of Rivanol in human buccal mucous was detected, which on average (n=6) accounted for (2,36+0,73)-Ш7cm2/s. Conclusion. This value correlates with the published data for the diffusion coefficients of other dyes in the skin dermis and the pathologically changed mucosa of the maxillary sinus of a volunteer. The results can be used for the development of modern methods in medicine, combining diagnostic and therapeutic technologies, which are now known under the general name - theranostics, as well as clinicians to develop sound protocols for photodynamic therapy, eliminating the trauma due to laser effects.

Full Text

Restricted Access

About the authors

A. A Selifonov

Saratov State University; Saratov State Medical University

Email: selif-ei@yandex.ru
Astrakhanskaya str. 83, Saratov, 410012, Russian Federation; Kazachaya str., 112 B, Saratov, 410012, Russian Federation;

G. N Naumova

Saratov State University

Email: selif-ei@yandex.ru
Astrakhanskaya str. 83, Saratov, 410012, Russian Federation

V. V Tuchin

Saratov State University; Tomsk State University; ITMO University; Institute of Precision Mechanics and Control

Email: selif-ei@yandex.ru
Astrakhanskaya str. 83, Saratov, 410012, Russian Federation; Lenina Avenue, 36, Tomsk, 634050, Russian Federation; Kronverksky prospect, 49, Saint Petersburg, 197101, Russian Federation; Rabochaya str., 24, Saratov, 410028, Russian Federation

References

  1. Сазонова Н.В. Проявления воспаления пародонта при различных соматических заболеваниях. Образование и наука в России и за рубежом. 2019; 3 (51): 71-6
  2. Eaton K., Ower P Practical Periodontics. L.: Churchill Livingstone; 2015; 376.
  3. Боровский Ф.В., Машкиллейсон А.Л. Хронический рецидивирующий афтозный стоматит. Заболевания слизистой оболочки полости рта и губ. М.: Медпресс, 2011; 325.
  4. Гажва С.И., Котунова Н.А., Куликов А.С. Применение фотодинамической терапии в алгоритме лечения эрозивно-язвенной формы красного плоского лишая слизистой оболочки рта. Современные проблемы науки и образования. 2018; 4: 13-5
  5. Орехова Л.Ю., Пушкарев О.А., Лукавенко А.А. Фотодинамическая терапия в клинике терапевтической стоматологии. Инновационная стоматология. 2010; 1: 24-9
  6. Tuchin V.V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, 3rd edition, Bellingham, WA: SPIE Press, 2015; 866.
  7. Попова А.Е., Крихели Н.И. Изменение микробиологических и биохимических показателей у пациентов с хроническим генерализованным пародонтитом средней степени после включения фотодинамической терапии в план комплексного лечении. Российская стоматология. 2013; 6 (4): 4-11.
  8. Чикина Е.С. Фотодинамическая терапия острых и хронических верхнечелюстных синуситов. Дис. ... канд. мед. наук. Саратов, 2005; 388
  9. Тучина Е.С. Тучин В.В., Ярославский И.В., Альтшулер ГБ. Фотодинамическое воздействие красного (625 нм) и излучений на бактерии вида Propioni bacterium acnes, обработанные фотосенсибилизаторами. Известия Саратовского университета. Серия: Физика. 2008; 12 (1): 21-6
  10. Tuchina E.S., Tuchin VV, Khlebtsov B.N., Khlebtsov N.G. Phototoxic effect of conjugates of plasmon-resonance nanoparticles with indocyanine green dye on Staphylococcus aureus induced by IR laser radiation. Quantum Electronics. 2011; 41 (4): 354-9.
  11. Engel E., Schraml R., Maisch T, Kobuch K., Konig B., Szeimies R.M., Hillenkamp J., Baumler W. Vasold R. Light Induced Decomposition of Indocyanine Green. Invest. Ophthalmol. Vis. Sci. 2008; 49 (5): 1777-83.
  12. Xu R.X., Huang J., Xu J.S., Sun D., Hinkle G.H., Martin E.W., Povoski S.P Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer. J. Biomed. Opt. 2009; 14 (3): 034020-6.
  13. Егорова А.В., Брилль Г.Е., Бугаева И.О., Тучина Е.С., Нечаева О.В. Фотодинамическое воздействие лазерного излучения красной области спектра на рост штаммов Staphylococcus aureus с использованием фотодитазина. Известия Саратовского университета. Серия: Химия. Биология. Экология. 2017; 17 (4): 428-31.
  14. Amelink A., Kaspers O.P., Sterenborg H.J.C.M., van der Wal J.E., Roodenburg J.L.N., Witjes M.J.H. Non-invasive measurement of the morphology and physiology of oral mucosa by use of optical spectroscopy. Oral Oncology. 2008; 44: 65-71.
  15. https://omlc.org/spectra/water/ (Дата обращения 02.04.2019)
  16. Котык А., Яначек К. Мембранный транспорт. М.: Мир, 1980; 344.
  17. Козырева О.Д., Пушкарева А.Е., Шалобаев Е.В., Биро И. Исследование влияния степени оксигенации крови на сигнал обратного рассеяния излучения при помощи численного моделирования. Научно-технический вестник информационных технологий, механики и оптики. 2015; 15 (1): 163-5
  18. Genina E.A., Bashkatov A.N., Tuchin V.V. Study of diffusion of indocyanine green as a photodynamic dye into skin using backscattering spectroscopy. Quantum Electronics. 2014; 44 (7): 689-95

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies