MESENCHYMAL STEM CELL TRANSPLANTATION IN NEURODEREGENERATIVE DISEASES


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Neurodegenerative diseases are a group of pathologies of the nervous system, which are characterized by progressive death of nerve cells and gradually increasing atrophy of the corresponding parts of the brain or spinal cord. In developed countries, an increase in average life expectancy is observed. The frequency of neurodegenerative diseases also has a pronounced upward trend. Currently, the treatment of neurodegenerative diseases is ineffective, especially at the advanced stages. Pathology of the nervous system is included in the list of global problems facing humanity in the 21st century. To solve such problems, funded programs are organized around the world. The development of regenerative medicine will allow developing in the near future new technologies for the diagnosis and treatment of neurodegenerative diseases. The review provides priority data on the prospects of using mesenchymal stem cell transplantation as replacement therapy for the treatment of neurodegenerative diseases.

Full Text

Restricted Access

About the authors

E. S Mironova

Saint Petersburg Institute of Bioregulation and Gerontology

Email: miayy@yandex.ru
Saint Petersburg, Russian

N. S Linkova

Saint Petersburg Institute of Bioregulation and Gerontology; Academy of postgraduate education of FMBA of Russia

Email: miayy@yandex.ru
Saint Petersburg, Russian Federation; Moscow, Russian Federation

I. G Popovich

Saint Petersburg Institute of Bioregulation and Gerontology; N.N. Petrov National Medical Research Center of Oncology named after N.N. Petrova

Email: miayy@yandex.ru
Saint Petersburg, Russian

References

  1. Baker D., Wijshake T., Tchkonia T, LeBrasseur N.K., Childs B.G., van de Sluis B., Kirkland J.L., van Deursen J.M. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011; 479: 232-6.
  2. Pizzicannella J., Diomede F., Merciaro I., Caputi S., Tartaro A., Guarnieri S., Trubiani O. Endothelial committed oral stem cells as modelling in the relationship between periodontal and cardiovascular disease. J. of cellular physiology. 2018; 233 (10): 6734-47.
  3. Cavalcanti M.F., Maria D.A., de Isla N., Leal-Junior E.C., Joensen J., Bjordal J.M., LopesMartins R.A., Diomede F., Trubiani O., Frigo L. Evaluation of the Proliferative Effects Induced by Low-Level Laser Therapy in Bone Marrow Stem Cell Culture. Photomedicine and laser surgery. 2015; 33 (12): 610-6.
  4. Kang J.M., Yeon B.K., Cho S.J., Suh Y.H. Stem Cell Therapy for Alzheimer's Disease: A Review of Recent Clinical Trials. J. Alzheimers Dis. 2016; 54 (3): 879-89.
  5. Kim S.U., Lee H.J., Kim Y.B. Neural stem cell-based treatment for neurodegenerative diseases. Neuropathology: official journal of the Japanese Society of Neuropathology. 2013; 33 (5): 491-504.
  6. Friedenstein A.J., Piatetzky S., Petrakova K.V. Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol. 1966; 16: 381-90.
  7. Friedenstein A.J., Chailakhjan R.K., Lalykina K.S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970; 3: 393-403.
  8. Weissman I.L. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000; 100: 157-68.
  9. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8 (4): 315-7.
  10. Samsonraj R.M., Raghunath M., Nurcombe V., Hui J.H., van Wijnen A.J., Cool S.M. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Transl Med. 2017; 6 (12): 2173-85.
  11. Giannoudis P.V., Goff T., Roshdy T, Jones E., McGonagle D. Does mobilisation and transmigration of mesenchymal stem cells occur after trauma? Injury. 2010; 41: 1099-102.
  12. Li F., Wang X., Niyibizi C. Bone marrow stromal cells contribute to bone formation following infusion into femoral cavities of a mouse model of osteogenesis imperfect. Bone. 2010; 47 (3): 546-55.
  13. Tolar J., Le Blanc K., Keating A., Blazar B.R. Hitting the right spot with mesenchymal stromal cells (MSCs). Stem Cells. 2010; 28: 1446-55.
  14. Лызиков А.Н., Осипов Б.Б., Скуратов А.Г., Призенцов А.А. Стволовые клетки в регенеративной медицине: достижения и перспективы. Проблемы здоровья и экологии. 2015; 45 (3): 4-8. medicine: advances and percpectives. Problems of the health and ecology. 2015; 45 (3): 4-8 (in Russian)]
  15. Konno M., Hamazaki T.S., Fukuda S., Tokuhara M., Uchiyama H., Okazawa H., Okochi H., Asashima M. Biochem. Biophys. Res. Commun. 2010; 400: 461-5.
  16. Tan G., Shim W., Gu Y, Qian L., Chung YY, Lim S.Y, Yong P., Sim E., Wong P. Differential effect of myocardial matrix and integrins on cardiac differentiation of human mesenchymal stem cells. Differentiation. 2010; 7: 260-71.
  17. Banas A., Teratani T., Yamamoto Y., Tokuhara M., Takeshita F., Osaki M., Kato T., Okochi H., Ochiya T. Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure. J. Gastroenterol. Hepatol. 2009; 24: 70-7.
  18. Park B.W., Kang D.H., Kang E.J., Byun J.H., Lee J.S., Maeng G.H., Rho G.J. Peripheral nerve regeneration using autologous porcine skin-derived mesenchymal stem cells. J. Tissue Eng. Regen. Med. 2012; 6 (2): 113-24.
  19. Kalinina N.I., Sysoeva V.Y., Rubina K.A., Parfenova Y.V., Tkachuk V.A. Mesenchymal stem cells in tissue growth and repair. Acta Naturae. 2011; 3 (4): 30-7.
  20. Dauphinot V., Ravier A., Novais T., Delphin-Combe F., Moutet C., Xie J., Mouchoux C., Krolak-Salmon P. Relationship Between Comorbidities in Patients With Cognitive Complaint and Caregiver Burden: A Cross-Sectional Study. J. of the Am. medical directors association. 2016; 3 (17): 232-7.
  21. Jennings L.A., Reuben D.B., Evertson L.C., Serrano K.S., Ercoli L., Grill J., Chodosh J., Tan Z., Wenger N.S. Unmet needs of caregivers of individuals referred to a dementia care program. J. of the Am. Geriatrics Society. 2015; 2 (63): 282-9.
  22. Cendelin J., Mitoma H. Neurotransplantation therapy. Handb Clin. Neurol. 2018; 155: 379-91.
  23. Cendelin J. Transplantation and Stem Cell Therapy for Cerebellar Degenerations. Cerebellum. 2016; 15 (1): 48-50.
  24. Mortada I., Mortada R. Epigenetic changes in mesenchymal stem cells differentiation. Eur. J. Med. Genet. 2018; 61 (2): 114-8.
  25. Tan G., Shim W., Gu Y, Qian L., Chung Y.Y., Lim S.Y, Yong P., Sim E., Wong P. Differential effect of myocardial matrix and integrins on cardiac differentiation of human mesenchymal stem cells. Differentiation. 2010; 7: 260-71.
  26. Park B.W., Kang D.H., Kang E.J., Byun J.H., Lee J.S., Maeng G.H., Rho G.J. Peripheral nerve regeneration using autologous porcine skin-derived mesenchymal stem cells. J. Tissue Eng. Regen. Med. 2012; 6 (2): 113-24.
  27. Park H.J., Shin J.Y, Kim H.N., Oh S.H., Song S.K., Lee PH. Mesenchymal stem cells stabilize the blood-brain barrier through regulation of astrocytes. Stem Cell Res Ther. 2015; 6: 187-99.
  28. Steinbeck J.A., Studer L. Moving stem cells to the clinic: potential and limitations for brain repair. Neuron. 2015; 86 (1): 187-206.
  29. Юхта М.С., Волкова Н.А., Жуликова Е.П., Гончарук Е.И. Криоконсервированные мультипотентные мезенхимные стромальные клетки стимулируют репаративный хондрогенез в дегенеративно измененном межпозвонковом диске. Гены и клетки. 2013; 2: 29-34.
  30. Xu Z., Chu X., Jiang H., Schilling H., Chen S., Feng J. Induced dopaminergic neurons: A new promise for Parkinson's disease. Redox Biol. 2017; 11: 606-12.
  31. Wei L., Wei Z.Z., Jiang M.Q., Mohamad O., Yu S.P. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol. 2017; 157: 49-78.
  32. Takahashi K., Yamanaka Sh. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006; 126: 663-76.
  33. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007; 131: 861-72.
  34. Nori S., Okada Y, Nishimura S., Sasaki T., Itakura G., Kobayashi Y, Renault-Mihara F., Shimizu A., Koya I., Yoshida R., Kudoh J., Koike M., Uchiyama Y., Ikeda E., Toyama Y, Nakamura M., Okano H. Long-term safety issues of iPSC-based cell therapy in a spinal cord injury model: oncogenic transformation with epithelial-mesenchymal transition. Stem Cell Reports. 2015; 4 (3): 360-73.
  35. Yu J., Hu K., Smuga-Otto K., Tian S., Stewart R. Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences. Science. 2009; 324: 797-801.
  36. Pohl H. Stem Cells: from Embryonic Origin to Induced Pluripotency - An Overview. Enzo Life Science. 2019; 1-8.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies