Genetics of nonclassic form of congenital adrenal hyperplasia: review and study results


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Congenital adrenal hyperplasia (CAH) is a group of disorders caused by mutations in genes that encode steroidogenic enzymes. The most frequent form of CAH is caused by defects in CYP21A2 gene leading to 21-hydroxylase deficiency (21-OHD). There are 3 clinical forms of CAH: classic (salt-wasting (SW), simple virilizing (SV)), and nonclassic (NCCAH). Classic forms of 21-OHD can be specifically detected by the measurement of 17-hydroxyprogesterone in blood. Nonclassic form is often characterized by equivocal level of 17-hydroxyprogesterone and non-specific symptoms, so the genotyping is essential for the diagnosis. Moreover, molecular analysis of CYP21A2 mutations is useful for predicting the severity of disease and important for genetic counseling. We discuss the structure of CYP21A2 gene, types of mutations, mechanisms of clinical manifestation of disorder, including clinical features of heterozygote carriers. We present results of the study of 85 patients with hyperandrogenemia that were genotyped by multiplex test detecting 15 most common mutations in CYP21A2.

Full Text

Restricted Access

About the authors

E. I Koroleva

I.P. Pavlov First Saint-Petersburg State Medical University

Email: katherinakoroleva@mail.ru

V. D Nazarov

I.P. Pavlov First Saint-Petersburg State Medical University

S. V Lapin

I.P. Pavlov First Saint-Petersburg State Medical University

A. V Mazing

I.P. Pavlov First Saint-Petersburg State Medical University

K. A Malyshkin

I.P. Pavlov First Saint-Petersburg State Medical University

A. V Lisker

I.P. Pavlov First Saint-Petersburg State Medical University

A. A Wilhelmi

Laboratory of molecular diagnostics and genetics, OOO «Helix»

E. I Morozov

Laboratory of molecular diagnostics and genetics, OOO «Helix»

N. E Koshevaya

Laboratory of molecular diagnostics and genetics, OOO «Helix»

E. V Emanuel

I.P. Pavlov First Saint-Petersburg State Medical University

References

  1. Hannah-Shmouni F., Chen W, Merke D.P. Genetics of Congenital Adrenal Hyperplasia. Endocrinol. Metab. Clin. North. Am. 2017; 46 (2): 435-58. https://doi. org/10.1016/j.ecl.2017.01.008
  2. Moran C., Azziz R., Weintrob N., Witchel S.F., Rohmer V, Dewailly D., Marcondes J.A., Pugeat M., Speiser P.W., Pignatelli D., Mendonca B.B., Bachega T.A., Escobar-Morreale H.F., Carmina E., Fruzzetti F., Kelestimur F. Reproductive Outcome of Women with 21-Hydroxylase-Deficient Nonclassic Adrenal Hyperplasia. J. Clin. Endocrinol. Metab. 2006; 91 (9): 3451-6. https://doi. org/10.1210/jc.2006-0062
  3. Speiser P.W., Dupont B., Rubinstein P., Piazza A., Kastelan A., New M.I. High frequency of nonclassical steroid 21-hydroxylase deficiency Am. J. Hum. Genet. 1985; 37 (4): 650-67
  4. Carmina E., Dewailly D., Escobar-Morreale H.F., Kelestimur F., Moran C., Oberfield S., Witchel S.F, Azziz R. Non-classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency revisited: an update with a special focus on adolescent and adult women. Hum. Reprod. Update 2017; 23 (5): 580-99. https://doi.org/10.1093/humupd/dmx014
  5. Turcu A.F., Auchus R.J. The next 150 years of congenital adrenal hyperplasia. J. Steroid. Biochem. Mol. Biol. 2015; 153: 63-71. https://doi.org/10.1016/j.jsbmb.2015.05.013
  6. Turcu A.F., Auchus R.J. Adrenal steroidogenesis and congenital adrenal hyperplasia. Endocrinol. Metab. Clin. North. Am. 2015; 44 (2): 275-96. https://doi. org/10.1016/j.ecl.2015.02.002
  7. Witchel S.F., Azziz R. Nonclassic congenital adrenal hyperplasia. Int. J. Pediatr. Endocrinol. 2010; 2010: 1-11. https://doi. org/10.1155/2010/625105
  8. Witchel S.F. Congenital Adrenal Hyperplasia. J. Pediatr. Adolesc. Gynecol. 2017; 30 (5): 520-34. https://doi.org/10.10Wj. jpag.2017.04.001
  9. Kamrath C., Hochberg Z., Hartmann M.F., Remer T, Wudy S.A. Increased Activation of the Alternative «Backdoor» Pathway in Patients with 21-Hydroxylase Deficiency: Evidence from Urinary Steroid Hormone Analysis. J. Clin. Endocrinol. Metab. 2012; 97 (3): 367-75. https://doi.org/10.1210/jc.2011-1997
  10. Dacou-Voutetakis C., Dracopoulou M. High Incidence of Molecular Defects of the CYP21 Gene in Patients with Premature Adrenarche. J. Clin. Endocrinol. Metab. 1999; 84 (5): 1570-4. https://doi. org/10.1210/jcem.84.5.5683
  11. Speiser P.W., Azziz R., Baskin L.S., Ghizzoni L., Hensle T.W, Merke D.P, Meyer-Bahlburg H.F, Miller WL., Montori V.M., Oberfield S.E., Ritzen M., White P.C. Congenital Adrenal Hyperplasia Due to Steroid 21-Hydroxylase Deficiency: An Endocrine Society Clin. Practice Guideline. J. Clin. Endocrinol. Metab. 2010; 95 (9): 4133-60. https://doi.org/10.1210/jc.2009-2631
  12. Moran C., Azziz R., Carmina E., Dewailly D., Fruzzetti F., Ibanez L., Knochenhauer E.S., Marcondes J.A., Mendonca B.B., Pignatelli D., Pugeat M., Rohmer V, Speiser P.W., Witchel S.F. 21-Hydroxylase-deficient nonclassic adrenal hyperplasia is a progressive disorder: A multicenter study Am. J. Obstet. Gynecol. 2000; 183 (6): 1468-74. https:// doi.org/10.1067/mob.2000.108020
  13. Bidet M., Bellanne-Chantelot C., Galand-Portier M.B., Golmard J.L., Tardy V, Morel Y., Clauin S., Coussieu C., Boudou P., Mowzowicz I., Bachelot A., Touraine P., Kuttenn F. Fertility in Women with Nonclassical Congenital Adrenal Hyperplasia due to 21-Hydroxylase Deficiency. J. Clin. Endocrinol. Metab. 2010; 95 (3): 1182-90. https:// doi.org/10.1210/jc.2009-1383
  14. Yang Z., Mendoza A.R., Welch T.R., Zipf WB., Yu C.Y. Modular Variations of the Human Ma jor Histocompatibility Complex Class III Genes for Serine/Threonine Kinase RP, Complement Component C4, Steroid 21-Hydroxylase CYP21, and Tenascin TNX (the RCCX Module). J. Biol. Chem. 1999; 274 (17): 12147-56. https://doi.org/10.1074/jbc.274.17.12147
  15. Lee H. CYP21 mutations and congenital adrenal hyperplasia. Clin. Genet. 2002; 59 (5): 293-301. https://doi.org/10.1034/j.1399-0004.2001.590501.x
  16. Tusie-Luna M.T., White P.C. Gene conversions and unequal crossovers between CYP21 (steroid 21-hydroxylase gene) and CYP21P involve different mechanisms. Proc. Natl. Acad. Sci. U.S.A. 1995; 92 (23): 10796-800. https://doi.org/10.1073/pnas.92.23.10796
  17. Higashi Y., Yoshioka H., Yamane M., Gotoh O., Fujii-Kuriyama Y. Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and a genuine gene. Proc. Natl. Acad. Sci. U.S.A. 1986; 83 (9): 2841-5. https://doi.org/10.1073/pnas.83.9.2841
  18. Lee H. The chimeric CYP21P/CYP21 gene and 21-hydroxylase deficiency. J. Hum. Genet. 2004; 49 (2): 65-72. https://doi. org/10.1007/s10038-003-0115-2
  19. Narasimhan M.L., Khattab A. Genetics of congenital adrenal hyperplasia and genotype-phenotype correlation. Fertil. Steril. 2019; 111 (1): 24-9. https://doi. org/10.1016/j.fertnstert.2018.11.007
  20. Parajes S., Krone N. Molecular Genetics of 21-Hydroxylase Deficiency. In eLS. 2014. https://doi.org/10.1002/9780470015902. a0023845
  21. Chen W., Xu Z., Sullivan A., Finkielstain G.P., Van Ryzin C., Merke D.P., McDonnell N.B. Junction site analysis of chimeric CYP21A1P/CYP21A2 genes in 21-hydroxylase deficiency Clin. Chem. 2012; 58 (2): 421-30. https://doi.org/10.1373/ clinchem.2011.174037
  22. Cargill M., Altshuler D., Ireland J., Sklar P., Ardlie K., Patil N., Shaw N., Lane C.R., Lim E.P., Kalyanaraman N., Nemesh J., Ziaugra L., Friedland L., Rolfe A., Warrington J., Lipshutz R., Daley G.Q., Lander E.S. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 1999; 22 (3): 231-8. https://doi. org/10.1038/10290
  23. Айламазян Э.К., Соболева Е.Л., Потин В.В., Осиновская Н.С. Диагностика и лечение неклассической формы врожденной гиперплазии коры надпочечников. Журнал акушерства и женских болезней. 2011; LX (1): 88-96. [Aylamazyan E.K., Soboleva E.L., Potin V.V., Osinovskaya N.S. Diagnosis and treatment of non-classical form of congenital adrenal hyperplasia. Zhurnal akusherstva i zhenskih boleznej. 2011; LX (1): 88-96 (in Russian)]
  24. Weintrob N., Brautbar C., Pertzelan A., Josefsberg Z., Dickerman Z., Kauschansky A., Lilos P., Peled D., Phillip M., Israel S. Genotype-phenotype associations in non-classical steroid 21-hydroxylase deficiency Eur. J. Endocrinol. 2000; 143 (3): 397-403. https://doi.org/10.1530/eje.0.1430397
  25. Deneux C., Tardy V, Dib A., Mornet E., Billaud L., Charron D., Morel Y, Kuttenn F. Phenotype-Genotype Correlation in 56 Women with Nonclassical Congenital Adrenal Hyperplasia due to 21-Hydroxylase Deficiency. J. Clin. Endocrinol. Metab. 2001; 86 (1): 207-13. https://doi. org/10.1210/jcem.86.1.7131
  26. Speiser P.W, Dupont J., Zhu D., Serrat J., Buegeleisen M., Tusie-Luna M.T., Lesser M., New M.I., White P.C. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency J. Clin. Invest. 1992; 90 (2): 584-95. https://doi.org/10.1172/JCI115897
  27. Haider S., Islam B., DAtri V, Sgobba M., Poojari C., Sun L., Yuen T., Zaidi M., New M.I. Structure-phenotype correlations of human CYP21A2 mutations in congenital adrenal hyperplasia. Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (7): 2605-10. https://doi. org/10.1073/pnas.1221133110
  28. New M.I., Abraham M., Gonzalez B., Dumic M., Razzaghy-Azar M., Chitayat D., Sun L., Zaidi M., Wilson R.C., Yuen T. Genotype-phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (7): 2611-6. https://doi.org/10.1073/pnas.1300057110
  29. Koyama S., Toyoura T., Saisho S., Shimozawa K., Yata J. Genetic Analysis of Japanese Patients with 21-Hydroxylase Deficiency: Identification of a Patient with a New Mutation of a Homozygous Deletion of Adenine at Codon 246 and Patients without Demonstrable Mutations within the Structural Gene for CYP21. J. Clin. Endocrinol. Metab. 2002; 87 (6): 2668-73. https://doi. org/10.1210/jcem.87.6.8522
  30. Tajima T., Fujieda K., Nakae J., Mikami A., Cutler G.B. Jr. Mutations of the CYP21 Gene in Nonclassical Steroid 21-Hydroxylase Deficiency in Japan. Endocr. J. 1998; 45 (4): 493-7. https://doi.org/10.1507/en-docrj.45.493
  31. Riedl S., Rohl F.W., Bonfig W, Bramswig J., Richter-Unruh A., Fricke-Otto S., Bettendorf M., Riepe F., Kriegshauser G., Schonau E., Even G., Hauffa B., Dorr H.G., Holl R.W, Mohnike K.; AQUAPE CAH Study Group. Genotype/phenotype correlations in 538 congenital adrenal hyperplasia patients from Germany and Austria: discordances in milder genotypes and in screened versus prescreening patients. Endocr. Connect. 2019; 8 (2): 86-94. https://doi.org/10.1530/ EC-18-0281
  32. Neocleous V., Fanis P., Toumba M., Phedonos A.A.P., Picolos M., Andreou E., Kyriakides T.C., Tanteles G.A., Shammas C., Phylactou L.A., Skordis N. Variations in the 3'UTR of the CYP21A2 Gene in Heterozygous Females with Hyperandrogenaemia. Int. J. Endocrinol. 2017; 8984365. https:// doi.org/10.1155/2017/8984365
  33. Knochenhauer E.S., Cortet-Rudelli C., Cunnigham R.D., Conway-Myers B.A., Dewailly D., Azziz R. Carriers of 21-Hydroxylase Deficiency Are Not at Increased Risk for Hyperandrogenism. J. Clin. Endocrinol. Metab. 1997; 82 (2): 479-85. https://doi. org/10.1210/jcem.82.2.3759
  34. Neocleous V., Shammas C., Phedonos A.A., Phylactou L.A., Skordis N. Phenotypic variability of hyperandrogenemia in females heterozygous for CYP21A2 mutations. Indian J. Endocrinol. Metab. 2014; 18 (1): 72-9. https://doi.org/10.4103/2230-8210.145077
  35. Paris F., Tardy V, Chalanjon A., Picot M.C., Morel Y, Sultan C. Premature pubarche in Mediterranean girls: high prevalence of heterozygous CYP21 mutation carriers. Gynecol. Endocrinol. 2010; 26 (5): 319-24. https://doi.org/10.3109/09513590903511505
  36. Dacou-Voutetakis C., Dracopoulou M. High Incidence of Molecular Defects of the CYP21 Gene in Patients with Premature Adrenarche. J. Clin. Endocrinol. Metab. 1999; 84 (5): 1570-4. https://doi. org/10.1210/jcem.84.5.5683
  37. Admoni O., Israel S., Lavi I., Gur M., Tenenbaum-Rakover Y. Hyperandrogenism in carriers of CYP21 mutations: the role of genotype. Clin. Endocrinol. (Oxf) 2006; 64 (6): 645-51. https://doi.org/10.111Vj.1365-2265.2006.02521.x
  38. Concolino P., Costella A. Congenital Adrenal Hyperplasia (CAH) due to 21-Hydroxylase Deficiency: A Comprehensive Focus on 233 Pathogenic Variants of CYP21A2 Gene. Mol. Diagn. Ther. 2018; 22 (3): 261-80. https://doi.org/10.1007/s40291-018-0319-y
  39. Kleinle S., Lang R., Fischer G.F., Vierhapper H., Waldhauser F., Fodinger M., Baumgartner-Parzer S.M. Duplications of the Functional CYP21A2 Gene Are Primarily Restricted to Q318X Alleles: Evidence for a Founder Effect. J. Clin. Endocrinol. Metab. 2009; 94 (10): 3954-8. https://doi. org/10.1210/jc.2009-0487
  40. Lekarev O., Tafuri K., Lane A.H., Zhu G., Nakamoto J.M., Buller-Burckle A.M., Wilson T.A., New M.I. Erroneous prenatal diagnosis of congenital adrenal hyperplasia owing to a duplication of the CYP21A2 gene. J. Perinatol. 2013; 33 (1): 76-8. https://doi. org/10.1038/jp.2012.5
  41. Kolahdouz M., Hashemipour M., Khanahmad H., Rabbani B., Salehi M., Rabbani A., Ansari A., Naseri M.M. Mutation detection of CYP21A2 gene in nonclassical congenital adrenal hyperplasia patients with premature pubarche. Adv. Biomed. Res. 2016; 5: 33. https://doi.org/10.4103/2277-9175.178794
  42. Binay C., Simsek E., Cilingir O., Yuksel Z., Kutlay O., Artan S. Prevalence of nonclassic congenital adrenal hyperplasia in Turkish children presenting with premature pubarche, hirsutism, or oligomenorrhoea. Int. J. Endocrinol. 2014; 768506. https://doi. org/10.1155/2014/768506

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies