Evaluation of the oxidative modification of blood plasma proteins and leukocytes in Alzheimer’s disease


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. The development of neurodegeneration in Alzheimer’s disease is inextricably linked with oxidative stress, a marker of which is oxidative protein modification. In the tissues of the brain, cerebrospinal fluid and plasma in Alzheimer’s disease, an increase in carbonyl derivatives was recorded. The aim of the study to assess the level of spontaneous and induced oxidative modification of blood plasma proteins, polymorphic nuclear and mononuclear leukocytes in patients with Alzheimer’s disease; determine the number of primary and secondary markers of oxidative stress in the observation and comparison groups; to evaluate the value of the reserve-adaptive potential of plasma and leukocytes in the studied groups. Methods. Spectrophotometric determination of carbonyl derivatives of blood plasma proteins and fractionated leukocytes resulting from spontaneous and metal-catalyzed oxidation. Results. In the blood plasma of patients with Alzheimer’s disease, a significant predominance of secondary markers of oxidative damage to the protein is noted; the total level of products of spontaneous and induced oxidative modification of mononuclear leukocyte protein in patients with Alzheimer’s disease exceeds the similar level in the comparison group; significant depletion of the reserve-adaptation potential of both blood plasma and leukocytes in Alzheimer’s disease was revealed. Conclusion. The development of Alzheimer’s disease is associated with the accumulation of products of oxidative modification of proteins and the depletion of the reserve-adaptive potential of blood plasma and mononuclear white blood cells.

Full Text

Restricted Access

About the authors

M. G Engalycheva

Ryazan state medical University named after academician I.P. Pavlov of the Ministry of Health of the Russian Federation

Email: mariyanaaber@yandex.ru
Vysokovoltnaya str., 9, Ryazan, 390026, Russian Federation

M. A Fomina

Ryazan state medical University named after academician I.P. Pavlov of the Ministry of Health of the Russian Federation

Email: mariyanaaber@yandex.ru
Vysokovoltnaya str., 9, Ryazan, 390026, Russian Federation

D. S Petrov

Ryazan state medical University named after academician I.P. Pavlov of the Ministry of Health of the Russian Federation

Email: mariyanaaber@yandex.ru
Vysokovoltnaya str., 9, Ryazan, 390026, Russian Federation

T. V Tazina

Ryazan state medical University named after academician I.P. Pavlov of the Ministry of Health of the Russian Federation

Email: mariyanaaber@yandex.ru
Vysokovoltnaya str., 9, Ryazan, 390026, Russian Federation

References

  1. Sultana R., Butterfield D. Oxidative modification of brain proteins in Alzheimer's disease: perspective on future studies based on results of redox proteomics studies. Alzheimer Disease. 2013; 33 (1): 243-51.
  2. Дубинина Е.Е., Пустыгина А.В. Свободнорадикальные процессы при старении, нейродегенеративных заболеваниях и других патологических состояниях. Биомедицинская химия. 2007; 53 (4): 351-72
  3. Chen Z., Zhong C. Oxidative stress in Alzheimer's disease. Neuroscience Bulletin. 2014; 30: 271. https://doi.org/10.1007/s12264-013-1423-y
  4. Tramutola A., Lanzillotta C., Perluigi M., Butterfield D. Oxidative Stress, Protein Modification and Alzheimer Disease. Brain research bulletin. 2016; 133: 205-12.
  5. Tiwari S.C., Soni R.M. Alzheimer's Disease Pathology and Oxidative Stress: Possible Therapeutic Options. J. of Alzheimers Disease & Parkinsonism. 2014; 4: 5.
  6. Zhiyou C., Ratka A. Oxidative Stress and p-Amyloid Protein in Alzheimer's Disease. Neuro-Molecular Medicine. 2011; 13 (4): 223-50.
  7. Андреева Т.В., Лукив У.Д., Рогаев Е.И. Биологические основы амилоидоза при болезни Альцгеймера. Биохимия. 2017; 82 (2): 226-46.
  8. Стефанова Н.А., Колосова Н.Г Эволюция представлений о патогенезе болезни Альцгеймера. Вестник московского университета. Биология. 2016; 1: 6-13.
  9. Skoumalova A., Hort J. Blood markers of oxidative stress in Alzheimer's disease. J. of cellular and molecular medicine. 2012; 16 (10): 2291-300.
  10. Новиков Д.К., Новикова Д.И. Клеточные методы иммунодиагностики. М.: Минск, 1979; 222.
  11. Фомина М.А., Абаленихина Ю.В. Способ комплексной оценки содержания продуктов окислительной модификации белков в тканях и биологических жидкостях. Методические рекомендации. Рязань, 2014; 61.
  12. Никитина Ю.В. Изменения окислительных процессов в ткани головного мозга и крови крыс в раннем онтогенезе. Вестник Нижегородского университета им. Н.И. Лобачевского. 2009; 6 (1): 124-31.
  13. Greilberger J., Fuchs D., Leblhuber F., Greilberger M., Wintersteiger R., Tafeit E. Carbonyl proteins as a clinical marker in Alzheimer's disease and its relation to tryptophan degradation and immune activation. Clinical laboratory 2010; 56 (9-10): 441-8.
  14. Теплов С.А., Абаленихина Ю.В., Фомина М.А., Матвеева И.В. Изменение спектра поглощения продуктов окислительной модификации белков печени крыс в условиях дефицита синтеза оксида азота различной выраженности. Наука молодых (Eruditio juvenium). 2016; 1: 50-4.
  15. Залесская Т.И., Авер И.И., Мандрик К.А. Перекисное окисление белков плазмы крови у больных глаукомой. Журнал ГрГМУ. 2007; 3: 66-8.
  16. Кудлаева А.М., Фомина М.А., Исаков С.А. Влияние L-аргинина и L-карнитина на окислительную модификацию лизосомальных белков печени крыс. Вестник Удмуртского университета. 2017; 27 (3): 368-74.
  17. Калинин Р.Е., Пшенников А.С., Деев Р.Е. Изучение возможных биохимических и морфологических маркеров феномена «no-rewlow» в эксперименте. Клиническая и экспериментальная хирургия. Журнал им. акад. Б.В. Петровского. 2018; 1: 62-9.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies