Molecular mechanisms of resistance development under targeted therapy on the example of cutaneous melanoma


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Cutaneous melanoma is a highly heterogeneous malignancy, which characterized by low effectiveness of chemotherapeutic antitumor agents. 50% of melanomas have a somatic mutation in BRAF oncogene, leading to uncontrolled activation of mitogen-activated protein kinase signaling cascade ensuring the proliferation and survival of tumor cells. The blocking of the BRAF gene mutation effects seemed to be a reasonable way to increase the effectiveness of melanoma therapy. However, the effectiveness of melanoma treatment in many patients is limited up to six months due to the development of acquired resistance. Acquired chemoresistance is related to the reactivation of signal pathways involved in the control of cell proliferation. Besides, several BRAF-positive melanomas exhibit intrinsic resistance due to mutations in tumor suppressor genes. Unveiling molecular mechanisms of chemoresistance to targeted therapy will allow developing more effective strategies for cancer diseases. This paper provides a review of the literature and our data as well as the results of clinical studies on a variety of resistance mechanisms and strategies for their elimination.

Full Text

Restricted Access

About the authors

T. G Ruksha

Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: tatyana_ruksha@mail.ru
Head of the Department of pathological physiology. Krasnoyarsk State Medical University. MD, professor Partizana Zheleznyaka str., 1, Krasnoyarsk, 660022, Russian Federation

D. S Zemtsov

Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: danil_zemtsov@mail.ru
PhD student of the Pathological Physiology Department. Krasnoyarsk State Medical University Partizana Zheleznyaka str., 1, Krasnoyarsk, 660022, Russian Federation

S. N Lavrentiev

Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: semyonlavrentev@mail.ru
PhD student of the Pathological Physiology Department. Krasnoyarsk State Medical University. Partizana Zheleznyaka str., 1, Krasnoyarsk, 660022, Russian Federation

N. V Palkina

Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: mosmannv@yandex.ru
assistant of the Department of pathological physiology. Krasnoyarsk State Medical University. Candidate of medical Sciences Partizana Zheleznyaka str., 1, Krasnoyarsk, 660022, Russian Federation

A. R Yessimbekova

Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: aleksandra.esimbekova.96@mail.ru
PhD student of the Pathological Physiology Department. Krasnoyarsk State Medical University Partizana Zheleznyaka str., 1, Krasnoyarsk, 660022, Russian Federation

References

  1. Maverakis E., Cornelius L.A., Bowen G.M., Phan T., Patel F.B., Fitzmaurice S., He Y, Burrall B., Duong C., Kloxin A.M., Hawa-Sultani H., Wilken R., Martinez S.R., Patel F. Metastatic melanoma - a review of current and future treatment options. Acta Derm Venereol. 2015; 95 (5): 516-24. https://doi. org/10.2340/00015555-2035.
  2. Atkins M.B., Hsu J., Lee S., Cohen G.I., Flaherty L.E., Sosman J.A., Sondak V.K., Kirkwood J.M. Phase III trial comparing concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin-2, and interferon alfa-2b with cisplatin, vinblastine, and dacar-bazine alone in patients with metastatic malignant melanoma (E3695): a trial coordinated by the Eastern Cooperative Oncology Group. J. Clin. Oncol. 2008; 26 (35): 5748-54.
  3. Middleton M.R., Grob J.J., Aaronson N., Fierlbeck G., Tilgen W, Seiter S., Gore M., Aamdal S., Cebon J., Coates A., Dreno B., Henz M., Schadendorf D., Kapp A., Weiss J., Fraass U., Statkevich P, Muller M., Thatcher N. Randomized phase III study of temozolo-mide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J. of Clinical Oncology. 2000; 18 (1): 158-66.
  4. Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2018 году (заболеваемость и смертность). М.: МнИОИ им. П.А. Герцена - филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019; 250.
  5. Bray F., Ferlay J., Soerjomataram I., Siegel R. L., Torre L.A., Jemal A. Cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;394-424. https://doi.org/10.3322/ caac.21492.
  6. Cascinelli N., Belli F., MacKie R.M., Santinami M., Bufalino R., Morabito A. Effect of long-term adjuvant therapy with interferon alpha-2a in patients with regional node metastases from cutaneous melanoma: a randomised trial. Lancet. 2001; 15; 358 (9285): 866-9.
  7. Davies H., Bignell G.R., Cox C., Stephens P, Edkins S., Clegg S., Teague J., Woffendin H. , Garnett M.J., Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y, Gray K., Hall S., Hawes R., Hughes J., Kosmidou V, Menzies A., Mould C., Parker A., Stevens C., Watt S. , Hooper S., Wilson R., Jayatilake H., Gusterson B.A., Cooper C., Shipley J., Hargrave D., Pritchard-Jones K., Maitland N., Chenevix-Trench G., Riggins G.J., Bigner D.D., Palmieri G., Cossu A., Flanagan A., Nicholson A., Ho J.W., Leung S.Y., Yuen S.T., Weber B.L., Seigler H.F, Darrow T.L., Paterson H., Marais R., Marshall C.J., Wooster R, Stratton M.R., Mutations of the BRAF gene in human cancer. Nature. 2002; 417 (6892): 949-54. https://doi.org/10.1038/ nature00766
  8. Janet L., Maldonado., Jane Fridlyand, Hetal Patel, Ajay N. Jain, Klaus Busam, Toshiro Kageshita, Tomomichi Ono, Donna G. Albertson, Dan Pinkel, Boris C. Bastian. Determinants of BRAF Mutations in Primary Melanomas. J. Natl. Cancer Inst. 2003; 95 (24): 1878-90. https://doi.org/10.1093/jnci/ djg123
  9. Aksenenko M.B., Kirichenko A.K., Ruksha T. G. Russian study of morphological prognostic factors characterization in BRAF-mutant cutaneous melanoma. Pathol Res Pract. 2015; 211 (7): 521-7.
  10. Орлова К.В., Харкевич Г.Ю., Утяшев И.А., Демидов Л.В. Персонализированная терапия метастатической меланомы кожи. Эффективная фармакотерапия. 2016; 39: 16-21.
  11. Tsai J., Lee J.T., Wang W., Zhang J., Cho H. , Mamo S., Bremer R., Gillette S., Kong J. , Haass N. K., Sproesser K., Li L., Smalley K. S. M., Fong D., Zhu Y-L.,Marimuthu A., Nguyen H., Lam B., Liu J., Cheung I., Rice J., Suzuki Y,Luu C.,Settachatgul C., Shellooe R., Cantwell J., Kim S-H., Schlessinger J., Zhang K. Y. J., West B.L., Powell B., Habets G., Zhang C., Ibrahim P. N.,Hirth P,Artis D.R., Herlyn M.,Bollag G. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci. 2008; 105 (8): 3041-6. https://doi.org/10.1073/ pnas.0711741105
  12. McArthur G.A., Chapman P.B., Robert C., Larkin J., Haanen J.B., Dummer R., Ribas A., Hogg D., Hamid O., Ascierto P.A., Garbe C., Testori A., Maio M., Lorigan P., Lebbe C., Jouary T, Schadendorf D., O'Day S.J., Kirkwood J.M., Eggermont A.M., Dreno B., Sosman J.A., Flaherty K.T., Yin M., Caro I., Cheng S., Trunzer K., Hauschild A. Safety and efficacy of vemurafenib in BRAF (V600E) and BRAF (V600K) mutationpositive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. The Lancet Oncology. 2014; 15 (3): 323-32. https://doi.org/10.1016/S1470-2045(14)70012-9
  13. Amaral T., Sinnberg T., Meier F, Krepler C., Levesque M., Niessner H., Garbe C. The mitogen-activated protein kinase pathway in melanoma part I - activation and primary resistance mechanisms to BRAF inhibition. European J. of Cancer. 2017; 73: 93-101. https://doi.org/10.1016/j.ejca.2016.12.010
  14. Hugo W., Shi H., Sun L., Piva M., Song C., Kong X., Moriceau G., Hong A., Dahlman K.B., Johnson D.B., Sosman J.A., Ribas A., Lo R. S. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell. 2015; 162 (6): 1271-85. https://doi. org/10.1016/j.cell.2015.07.061
  15. Eliezer M. Van Allen., Wagle N., Sucker A., Treacy D.J., Johannessen C.M., Goetz E.M., Place C.S., Taylor-Weiner A., Whittaker S., Kryukov G.V, Hodis E., Rosenberg M., McKenna A., Cibulskis K., Farlow D., Zimmer L., Hillen U., Gutzmer R., Goldinger S.M., Ugurel S. , Gogas H.J., Egberts F, Berking C., Trefzer U., Loquai C., Weide B., Hassel J.C., Gabriel S.B., Carter S.L., Getz G., Garraway L.A., Schadendorf D. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discovery. 2014; 4 (1): 94-109. https://doi.org/10.1158/2159-8290.CD-13-0617
  16. Johnson D.B., Menzies A.M., Zimmer L., Eroglu Z., Ye F, Zhao S., Rizos H., Sucker A., Scolyer R.A., Gutzmer R., Gogas H., Kefford K.F, Thompson J.F, Becker J.C., Berking C., Egberts F, Loquai C., Goldinger S.M., Pupo G.M., Hugo W., Kong X., Garraway L.A., Sosman J.A., Ribas A., Lo R.S., Long G.V, Schadendorf D. Acquired BRAF inhibitor resistance: a multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Clinical Cancer Research. 2015; 51 (18): 2792-9. https://doi. org/10.1016/j.ejca.2015.08.022.
  17. Shen-hsi Yang., Sharrocks A.D., Whitmarsh A.J. MAP kinase signalling cascades and transcriptional regulation. Gene. 2013; 513: 1-13. https://doi.org/10.1016/]. gene.2012.10.033
  18. Gray-Schopfer V, Wellbrock C., Marais R. Melanoma biology and new targeted therapy. Nature. 2007; 445 (7130): 851-7. https://doi.org/10.1038/nature05661
  19. Демидов Л.В., Утяшев И.А., Харкевич Г.Ю. Подходы к диагностике и терапии меланомы кожи: эраперсонализированной медицины. Consilium Medicum. Дерматология. 2013; 2 (3): 42-7.
  20. Wagle N., Van Allen E.M., Treacy D.J, Frederick D.T., Cooper Z.A., Taylor-Weiner A., Rosenberg M., Goetz E.M., Sullivan R.J., Farlow D.N., Friedrich D.C., Anderka K., Perrin D., Johannessen C.M., McKenna A., Cibulskis K., Kryukov G., Hodis E., Lawrence D.P., Fisher S., Getz G., Gabriel S.B., Carter S.L., Flaherty K.T., Wargo J.A., Garraway L.A. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Disc. 2014; 4 (1): 61-8. https:// doi.org/10.1158/2159-8290.CD-13-0631
  21. Atzori M.G., Ceci C., Ruffini F, Trapani M., Barbaccia M.L., Tentori L., DAtri S., Lacal P.M., Graziani G. Role of VEGFR-1 in melanoma acquired resistance to the BRAF inhibitor vemurafenib. Journal of cellular and molecular medicine. 2019; 24: 465-75. https://doi.org/10.1111/jcmm.14755
  22. Wang J., Sinnberg T., Niessner H., Dolker R., Sauer B., Kempf W.E., Meier F, Leslie N.R., Schittek B. PTEN regulates IGF-1R-mediated therapy resistance in melanoma. Pigment Cell Melanoma Res. 2015; 28: 572-89. https://doi.org/10.1111/pcmr. 12390
  23. Ng Y.K., Lee J.Y., Supko K.M., Khan A.S., Torres S.M., Berwick M., Ho J., Kirkwood J.M., Siegfried J.M., Stabile L.P. Pan-erbB inhibition potentiates BRAF inhibitors for melanoma treatment. Melanoma Res. 2014;207-18. https://doi.org/10.1097/ CMR.
  24. Yadav V, Zhang X., Liu J., Estrem S., Li S., Gong X-Q., Buchanan S., Henry J.R., Starling J.J., Peng S-B. Reactivation of Mitogen-activated Protein Kinase (MAPK) pathway by FGF Receptor 3 (FGFR3)/Ras mediates resistance to vemurafenib in human B-RAF V600E mutant melanoma. J. Biol. Chem. 2012; 287 (33): 28087-98. https://doi. org/10.1074/jbc.M112.377218.
  25. Poulikakos P.I., Persaud Y, Janakiraman M., Kong X., Ng C., Moriceau G., Shi H., Atefi M., Titz B., Gabay M.T., Salton M., Dahlman K.B., Tadi M., Wargo J.A., Flaherty K.T., Kelley M.C., Misteli T., Chapman P.B., Sosman J.A., Graeber T.G., Ribas A., Lo R.S., Rosen N., Solit D.B. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature. 2011; 480 (7377): 387-90. https://doi.org/10.1038/ nature10662
  26. Wagle N., Emery C., Berger M.F, Davis M.J., Sawyer A., Pochanard P., Kehoe S.M., Johannessen C.M., Macconaill L.E., Hahn W.C., Meyerson M., Garraway L.A. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J. Clin. Oncol. 2011; 29 (22): 3085-96. https:// doi.org/10.1200/JCO.2010.33.2312
  27. Moriceau G., Hugo W., Hong A., Shi H., Kong X., Yu C.C., Koya R.C., Samatar A.A., Khanlou N., Braun J., Ruchalski K., Seifert H., Larkin J., Dahlman K.B., Johnson D.B., Algazi A., Sosman J.A., Ribas A., Lo R.S. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell. 2015; 27 (2): 240-56. https://doi.org/10.10Wj. ccell.2014.11.018.
  28. Мазуренко Н.Н. Генетические особенности и маркеры меланомы кожи. Успехи молекулярной онкологии. 2014; 1 (2): 26-35.
  29. Rajkumar S., Watson I.R. Molecular characterization of cutaneous melanoma: creating a framework for targeted and immune therapies. Br. J. Cancer. 2016;145-55. https://doi.org/10.1038/ bjc.2016.195
  30. Fedorenko I.V., Gibney G.T., Keiran S.M. NRAS mutant melanoma: biological behavior and future strategies for therapeutic management. Oncogene. 2013;3009-18. https://doi.org/10.1038/ onc.2012.453.
  31. Grimaldi A.M., Simeone E., Festino L., Vanella V, Marco Palla M., Ascierto P.A. Novel mechanisms and therapeutic approaches in melanoma: targeting the MAPK pathway. Discovery Medicine. 2015; 19 (107): 455-61.
  32. Jiang C.C., Lai F., Thorne R.F., Yang F., Liu H., Hersey P, Zhang X.D. MEK-independent survival of B-RAFV600E melanoma cells selected for resistance to apoptosis induced by the RAF inhibitor PLX4720. Clin Cancer Res. 2011; 17 (4): 721-30. https:// doi.org/10.1158/1078-0432.CCR-10-2225
  33. Жуликов Я.А., Самойленко И.В., Демидов Л.В. Механизмы резистентности метастатической меланомы кожи к анти-PD-L терапии. Российский биотерапевтический журнал. 2018; 1 (17): 34-46.
  34. Smalley K.S., Haass N.K., Brafford P.A., Lioni M. , Flaherty K.T., Herlyn M. Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol Cancer Ther. 2006; 5 (5): 1136-44.
  35. Gopal Y.N., Deng W., Woodman S.E., Komurov K., Ram P, Smith P.D., Davies M.A. Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Res. 2010; 70 (21): 8736-47. https://doi.org/10.1158/0008-5472.CAN-10-0902.
  36. Paraiso K.H.T., Xiang Y, Rebecca V.W., Abel E.V, Chen Y.A., Munko A.C., Wood E., Fedorenko I.V, Sondak V.K., Anderson A.R.A., Ribas A., Palma M.D., Nathanson K.L., Koomen J.M., Messina J.L., Smalley K.S.M. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res. 2011; 71 (7): 2750-60. https://doi.org/10.1158/0008-5472.
  37. Lacouture M.E., Duvic M., Hauschild A., Prieto V.G., Robert C., Schadendorf D., Kim C.C., McCormack C.J., Myskowski P.L., Spleiss O., Trunzer K., Su F, Nelson B., Nolop K.B., Grippo J.F, Lee R.J., Klimek M.J., Troy J. L., Joe A.K. Analysis of dermatologic events in vemurafenib-treated patients with melanoma. Oncologist. 2013; 18 (3): 314-22. https://doi.org/10.1634/theoncolo-gist.2012-0333.
  38. Solit D.B., Rosen N. Resistance to BRAF inhibition in melanomas. N Engl J. Med. 2011; 364 (8): 772-4. https://doi.org/10.1056/ NEJMcibr1013704.
  39. Long G.V., Eroglu Z., Infante J., Patel S.J. Long-term outcomes in patients with BRAF V600-mutant metastatic melanoma who received dabrafenib combined with trametinib. Clin. Oncol. 2018; 36 (7): 667-73. https://doi.org/10.1200/JC0.2017.74.1025
  40. Строяковский Д.Л., Абрамов М.Е., Демидов Л.В., Новик А.В., Орлова K. В., Проценко С.А, Самойленко И.В., Трофимова О.П., Харкевич Г.Ю., Юрченков А.Н. Злокачественные опухоли. 2019; 9 (3s2): 776. https://doi. org/10.18027/2224-5057-2019-9-3s2-243-258
  41. Kohno M., Tanimura S., Ozaki K. Targeting the extracellular signal-regulated kinase pathway in cancer therapy Biol. Pharm. Bull. 2011; 34 (12): 1781-4.
  42. Ferguson J., Arozarena I., Ehrhardt M., Wellbrock C. Combination of MEK and SRC inhibition suppresses melanoma cell growth and invasion. Oncogene. 2013;86-96. https://doi.org/10.1038/ onc.2012.25.
  43. Siroy A.E., Davies M.A., Lazar A.J. The PI3K-AKT Pathway in Melanoma. Genetics of Melanoma. Cancer Genetics. Springer, New York, NY 2016; 165-80. https://doi. org/10.1007/978-1-4939-3554-3_7.
  44. Watson I.R., Li L., Cabeceiras P.K., Mahdavi M., Gutschner T., Genovese G., Wang G., Fang Z., Tepper J.M., Stemke-Hale K., Tsai K.Y, Davies M.A., Mills G.B., Chin L. The RAC1 P29S hotspot mutation in melanoma confers resistance to pharmacological inhibition of RAF 2014; 74: 4845-52. https:// doi.org/10.1158/0008-5472.CAN-14-1232-T
  45. Whittaker S.R., Theurillat J.P, Van Allen E., Wagle N., Hsiao J., Cowley G.S., Schadendorf D., Root D.E., Garraway L.A. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov. 2013; 3: 350-62. https://doi.org/10.1158/2159-8290.CD-12-0470.
  46. Smalley K.S.M., Lioni M., Dalla Palma M., Xiao M., Desai B., Egyhazi S., Hansson J., Wu H., King A.J., Van Belle P, Elder D.E., Flaherty K. T., Herlyn M., Nathanson K.L. Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol Cancer Ther. 2008; 7 (9): 2876-83. https://doi.org/10.1158/1535-7163.MCT-08-0431
  47. Paraiso K.H., Fedorenko I.V, Cantini L.P, Munko A.C., Hall M., Sondak V.K., Messina J.L., Flaherty K.T., Smalley K.S. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br. J. Cancer. 2010; 102 (12): 1724-30. https://doi.org/10.1038/sj.bjc.6605714
  48. Curtin J.A., Fridlyand J., Kageshita T, Patel H.N., Busam K.J., Kutzner H., Cho K-H., Aiba S., Brocker E-B., LeBoit PE., Pinkel D., Bastian B.C. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 2005; 353 (20): 2135-47. https://doi.org/10.1056/NEJ-Moa050092
  49. Diaz-Martinez M., Benito-Jardon L., Alonso L. , Koetz-Ploch L., Hernando E., Teixido J. miR-204-5p and miR-211-5p contribute to BRAF inhibitor resistance in melanoma. Cancer Res. 2018; 78 (4): 1017-30.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies