Standardization of the method of multi-target single-nucleotide elongation for molecular genetic study of cytological material in thyroid neoplasm


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Thyroid cancer (TC) is the most prevalent cancer among malignant neoplasms of the organs of the endocrine system. Cytological categories Bethesda III-V of TC are considered to be the most difficult for making a diagnosis. Molecular genetic tests can be a tool to complement routine cytopathological studies. The aim of the study. To develop a panel for detecting point mutations in the cytological material of thyroid tumors using the multi-target single-nucleotide elongation (MSE) method. Materials and methods. The studied group of patients included 52 cases with thyroid neoplasm. Patients were divided into subgroups under Bethesda category IV, V and VI. The first, second, and third subgroup consisted of 24, 7, and 21 patients correspondingly. Cytological material was obtained by fine-needle aspiration biopsy. Genetic testing was carried out using the MSE approach. There were created 3 panels included the most common mutations in thyroid cancer: mutations in the BRAF, KRAS, NRAS, HRAS genes. The obtained results of a postoperative histological examination included II samples of papillary thyroid cancer, 9 samples of the follicular variant of papillary cancer and 5 - follicular adenoma. Results. 39% of cytological samples showed mutations. The BRAFV600E mutation was revealed in 29% out of founding aberration, NRASQ6IR mutation in I0% of those. To verify the method, there were used positive and negative control samples confirmed by PCR. In all control samples, the results were completely consistent with the molecular genetic study by the MSE method. Conclusion. MSE is a highly sensitive and promising method for the detection of mutations in cytological samples in TC patients.

Full Text

Restricted Access

About the authors

P. A Fedorova

Pavlov First Saint-Petersburg State Medical University

Email: fedorova97@gmail.com
Researcher of Laboratory for Diagnosis of Autoimmune Diseases Lva Tolstogo str., 6-8, Saint Petersburg, 197022, Russian Federation

V. D Nazarov

Pavlov First Saint-Petersburg State Medical University

Email: nazarov19932@mail.ru
Junior Researcher of Laboratory for Diagnosis of Autoimmune Diseases of Pavlov First Saint Petersburg State Medical University, Russian Federation, PhD. Lva Tolstogo str., 6-8, Saint Petersburg, 197022, Russian Federation

A. A Musaelyan

Pavlov First Saint-Petersburg State Medical University

Email: a.musaelyan8@gmail.com
a 1st year resident of Pavlov First Saint Petersburg State Medical University, Russian Federation, Researcher of Laboratory for Diagnosis of Autoimmune Diseases Lva Tolstogo str., 6-8, Saint Petersburg, 197022, Russian Federation

S. V Lapin

Pavlov First Saint-Petersburg State Medical University

Email: svlapin@mail.ru
Head of Laboratory for Diagnosis of Autoimmune Diseases of Pavlov First Saint Petersburg State Medical University, Russian Federation, PhD. Lva Tolstogo str., 6-8, Saint Petersburg, 197022, Russian Federation

M. E Boriskova

Pavlov First Saint-Petersburg State Medical University

Email: boriskovam@gmail.com
Docent, Head of Division of Endocrine Surgery of Pavlov First Saint Petersburg State Medical University, Russian Federation, PhD. Lva Tolstogo str., 6-8, Saint Petersburg, 197022, Russian Federation

U. V Farafonova

Pavlov First Saint-Petersburg State Medical University

Email: medici@yandex.ru
Surgeon of Division of Endocrine Surgery of Pavlov First Saint Petersburg State Medical University, Russian Federation, PhD. Lva Tolstogo str., 6-8, Saint Petersburg, 197022, Russian Federation

V. L Emanuel

Pavlov First Saint-Petersburg State Medical University

Email: vladimirem1@gmail.com
Professor, Head of Department of Clinical Laboratory Diagnostics with Molecular Medicine Course of Pavlov First Saint Petersburg State Medical University, Russian Federation, PhD Lva Tolstogo str., 6-8, Saint Petersburg, 197022, Russian Federation

References

  1. Hay I.D., Thompson G.B., Grant C.S., Bergstralh E.J., Dvorak C.E., Gorman C.A. et al. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (19401999): Temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients. World J. Surg. 2002; 26 (8): 879-85. https://doi.org/10.1007/s00268-002-6612-1
  2. Saiselet M., Floor S., Tarabichi M., Dom G., H brant A., van Staveren W.C.G. et al. Thyroid cancer cell lines: An overview. Front Endocrinol (Lausanne). 2012; 3: 1-9. https://doi.org/10.3389/fendo.2012.00133
  3. Haugen B.R., Alexander E.K., Bible K.C., Doherty G.M., Mandel S.J., Nikiforov YE. et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid (Internet). 2016;1-133. https://doi.org/10.1089/ thy.2015.0020
  4. Xing M. Clinical utility of RAS mutations in thyroid cancer: A blurred picture now emerging clearer. BMC Medicine. 2016. https://doi.org/10.1089/thy2015.0020
  5. Fernandez-Ramirez F., Hurtado-Lopez L.M., Lopez M.A., Martinez-Penafiel E., Herrera-Gonzalez N.E., Kameyama L. et al. BRAF 1799T>A Mutation Frequency in Mexican Mestizo Patients with Papillary Thyroid Cancer. Biomed Res Int. 2018; 2018. https:// doi.org/10.1155/2018/2582179
  6. Ferrari S.M., Fallahi P., Ruffilli I., Elia G., Ragusa F, Paparo S.R. et al. Molecular testing in the diagnosis of differentiated thyroid carcinomas. Gland Surg. 2018;19-29. https://doi.org/10.21037/ gs.2017.11.07
  7. Kim W.W., Ha T.K., Bae S.K. Clinical implications of the BRAF mutation in papillary thyroid carcinoma and chronic lymphocytic thyroiditis. J. Otolaryngol - Head Neck Surg. 2018; 47 (1): 1-6. https://doi.org/10.1186/ s40463-017-0247-6
  8. Абросимов А.Ю. Инкапсулированные фолликулярные опухоли щитовидной железы неопределенного злокачественного потенциала в новой международной гистологической классификации. Клиническая и экспериментальная тиреоидология, 2018; 13 (4): 9-15. https:// doi.org/10.14341/ket9481
  9. Мусаелян А.А., Чистяков И.В., Назаров В.Д., Лапин С.В., Согоян М.В., Хальчицкий С.Е., Эмануэль В.Л., Лобачевская Т.В. Акопов А.Л. Оптимизация метода мультитаргетной однонуклеотидной элонгации для определния соматических мутаций при злокачественных ноовобразованиях. Молекулярная медицина. 2019; 2 (17). https://doi.org/10.29296/24999490-2019-02-06
  10. Под ред. Каприна А.Д., Старинского В.В., Петровой Г.В. Злокачественные новообразования в россии в 2017 году (заболеваемость и смертность). 2018
  11. Xie H., Wei B., Shen H., Gao Y, Wang L., Liu H. BRAF mutation in papillary thyroid carcinoma (PTC) and its association with clinicopathological features and systemic inflammation response index (SIRI). Am. J. Transl Res. 2018; 10 (8): 2726-36.
  12. Nikiforov Y.E. Role of Molecular Markers in Thyroid Nodule Management: Then and Now. Endocr Pract (Internet). 2017; (aop): EP171805.RA. https://doi.org/10.4158/ EP171805.RA
  13. Strickland K.C., Eszlinger M., Paschke R., Angell T.E., Alexander E.K., Marqusee E. et al. Molecular Testing of Nodules with a Suspicious or Malignant Cytologic Diagnosis in the Setting of Non-Invasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features (NIFTP). Endocr Pathol. 2018; 29 (1): 68-74. https://doi.org/10.1007/s12022-018-9515-x

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies