Impact of weakened geomagnetic field on the organotypic cell culture of various genesis


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. The investigations of the magnetic-biological effects are actual because of the permanent impact of changing Earth geomagnetic field on the live organisms. Purpose of the study was to investigate the impact of the weakened geomagnetic field (WGF) on the tissues of various genesis - ecto-, meso- and entodermal. The method of organotypic culture of tissues of Wistar line rats was used. Results. WGF stimulates cell proliferation in the mesodermal tissue (spleen, myocardium), whereas without its impact on other tissues under analysis. The WGF impact on the aerobic cells of spleen and myocardium can lead to the accumulation of the oxygen radicals, promoting a cell proliferation. The WGF stimulating effect of bioregulator peptides upon cell proliferation of all tissues, with the exception of myocardium and spleen tissue-specific peptides, was similar to the Earth magnetic field. Conclusion. The data about WGF stimulating effect on the cellular proliferation in myocardium, spleen can be used for creating physiotherapeutic methods of a regeneration increase in these tissues by pathology. The stimulating influence of bioregulator peptides upon all tissues under WGF impact is just the same as it is with the common geomagnetic field. It creates a base to its using under the WGF conditions by the fly in the cosmic space.

Full Text

Restricted Access

About the authors

Polina Nicolaevna Ivanova

The Herzen State Pedagogical University of Russia; Pavlov Institute of Physiology; St.Petersburg Institute of Bioregulation and Gerontology

Email: ivanovapolina19@mail.ru
Laboratory worker

Ekaterina Sergeevna Zalomaeva

The Herzen State Pedagogical University of Russia; Pavlov Institute of Physiology; St.Petersburg Institute of Bioregulation and Gerontology

postgraduate

Sergei Viktorovich Surma

Pavlov Institute of Physiology

Email: surmasv@infran.ru
Senior scientific worker

Natalia Iosifovna Chalisova

Pavlov Institute of Physiology; St.Petersburg Institute of Bioregulation and Gerontology

Email: ni_chalisova@mail.ru
Expert scientific worker

Oleg Mikchailovich Ivko

St.Petersburg Institute of Bioregulation and Gerontology

Email: secretary@gerontology.ru
Senior scientific worker

Ekaterina Alexandrovna Nikitina

The Herzen State Pedagogical University of Russia; Pavlov Institute of Physiology

Email: 21074@mail.ru
Head of Chair of anatomy and physiology

Boris Fedorovich Shchegolev

Pavlov Institute of Physiology

Email: shcheg@mail.ru
Senior scientific worker

References

  1. Стефанов В.Е., Крячко О.В. Спивак и др. Модельное исследование биологических эффектов слабых статических магнитных полей на организменном и субклеточном уровнях. Доклады АН. 2015; 461 (4): 485-8
  2. Хавинсон В.Х., Чалисова Н.И., Линькова Н.С., и др. Зависимость тканеспецифического действия пептидов от их количественного аминокислотного состава. Фундаментальные Исследования. 2015; 2: 497-503.
  3. Kolchina N., Khavinson V., Linkova N., et al. Systematic search for structural motifs of peptide binding to double-stranded DNA Nucleic Acids. Nucleic Acids Research. 2019; 47 (20): 10553-63. doi: 10.1093/nar/ gkz850.
  4. Khavinson V., Micans P., Maryanovich A. Peptides in the Epigenetic Control of Ageing. Great Britain: Profound Health Ltd. 2017.
  5. Гудошников С.А., Гребенщиков Ю.Б., Волков В.Т., и др. Магнитные и экранирующие свойства ленточных аморфных ферромагнитных материалов. Письма в ЖТФ. 2014; 40 (19): 42-50.
  6. Елдашев И.C., Щеголев Б.Ф., Cуpма C.В., и др. Влияние слабых магнитных полей на развитие сателлитных клеток новорожденной крысы в первичной культуре. Биофизика. 2010; 55 (5): 868-74.
  7. Спивак И.М., Куранова М.Л., Мавропуло-Столяренко Г.Р. и др. Клеточный ответ на воздействие сверхслабых статических магнитных полей. Биофизика. 2016; 61 (3): 516-22.
  8. Бучаченко А.Л. Магнито-зависимые молекулярные и химические процессы в биохимии, генетике и медицине. Успехи химии. 2014; 83 (1): 1-12.
  9. Nadeev A.D., Bogdanov V.A., Khmelevskoy D.A., Surma S.V., Stefanov V.E., Jenkins R.O., Goncharov N.V. Effects of exposure of rat erythrocytes to a hypogeomagnetic field. Biomedical Spectroscopy and Imaging. 2018; 17 (3-4): 105-13. doi: 10.3233/BSI-180181
  10. Deuk-Young N., Moo-Yong R. The Inflammatory Response and Cardiac Repair After Myocardial Infarction. Korean Circ J. 2009; 39 (10): 393-8.
  11. Suzuki Y.J., Forman H.J., Sevanian A. Oxidants as stimulators of signal transduction. Free Rad. Biol. Med. 1997; 22 (1-2): 269-85.
  12. Никитина Е.А., Медведева А.В., Герасименко М.С., и др. Ослабленное магнитное поле Земли: влияние на транскрипционную активность генома, обучение и память у Dr. Melanogaster, Журнал высшей нервной деятельности им. И.П. Павлова. 2017; 67 (2): 246-56.
  13. Никитина Е.А., Каминская А.Н., Молотков Д.А. и др. Влияние теплового шока на обучение, формирование памяти и содержание LIMK1 в мозге самцов Drosophila melanogaster с измененной структурой гена limk1. Журнал эволюционной биохимии и физиологии. 2014; 50 (2): 137-47.
  14. Савватеева-Попова Е.В., Никитина Е.А., Медведева А.В. От нейрогенетики к нейроэпигенетике. Генетика. 2015; 51 (5): 613-24.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies