MicroRNA and its’ targets: basics of boiinformatic search


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

MicroRNAs are defined as short non-coding molecules that regulate gene expression at the post-transcriptional level through complementary binding to the corresponding mRNA. This pairing leads to inhibiting offurther translation by mRNA degradation, in other words, microRNA is a crucial example of epigenetic regulation. Recent reports have suggested an important role of these signaling molecules in numerous chronic non-infectious diseases development, including different types of cancer. This linking in the onset and progression of various pathological conditions makes it possible to considermicroRNAs as promising candidates for creating effective diagnostic, prognostic and therapeutic technologies. The main problem in the design of research related to miRNA functional studies is the necessity to predict the effective miRNAs: mRNA interaction because of the multi-target effect on corresponding genes. In order to overcome this barrier and to anticipate potential miRNAs targets effects for the further guidance of the experimental stage, a number of bioinformatics research tools have been developed. In this review we will consider the basic molecular principles that underlie the bioinformatics algorithms for predicting targets and miRNAs: mRNA interactions. Furthermore, the key parameters as well as bases of their interpretation for the most used web tools, such as TargetScan and DIANA Tools, will be described.

Full Text

Restricted Access

About the authors

Alexander Vladimirovich Shestakov

Siberian State Medical University at the Ministry of Health of Russia

Email: shestakov1808@gmail.com
PhD student of the In-patient Department Therapy Division with a Clinical Pharmacology Course

Arina Alekseevna Mikhailova

Siberian State Medical University at the Ministry of Health of Russia

Email: armikhaylova@yandex.ru
student of general medicine faculty

Tatiana Vladimirovna Saprina

Siberian State Medical University at the Ministry of Health of Russia

Email: tanja.v.saprina@mail.ru
MD, PhD, head of the endocrinology clinic

Oktyabrina Erdemovna Onkhonova

Siberian State Medical University at the Ministry of Health of Russia

Email: oktya.2014@mail.ru
PhD.student of the In-patient Department Therapy Division with a Clinical Pharmacology Course

References

  1. Kozomara A., Birgaoanu M., Griffiths-Jones S. MiRBase: from microRNA sequences to function. Nucleic Acids Research. 2019; 47: 155-62 https://doi.org/10.1093/nar/gky1141
  2. Shu J., Vieira Resende e Silva B., Gao T., Xu Z., Cui J. Dynamic and Modularized MicroRNA Regulation and Its Implication in Human Cancers. Scientific Report. 2017; 7 (13356): 1-17. https://doi.org/10.1038/s41598-017-13470-5
  3. Sekar D., Venugopal B., Sekar P., Krishnan R. Role of microRNA 21 in diabetes and associated/related diseases. Gene. 2016; 582 (1): 14-8. https://doi.org/10.10Wj.gene.2016.01.039
  4. Pishavar E., Behravan J. miR-126 as a Therapeutic Agent for Diabetes Mellitus. Current Pharmaceutical Design. 2017; 23 (22): 3309-14. https://doi.org/10.2174/1381612823666170424120121.
  5. Shi C., Huang F., Gu X., Zhang M., Wen J., You L., Cui X., Ji C., Guo X. Adipogenic miRNA and Meta-signature miRNAs involved in human adipocyte differentiation and obesity. Oncotarget. 2016; 7 (26): 40830-45. https://doi.org/10.18632/oncotarget.8518
  6. Denby L., Baker A.H. Targeting non-coding RNA for the therapy of renal disease. Current Opinion in Pharmacology. 2016; 27: 70-7. https://doi.org/10.10Wj.coph.2016.02.001.
  7. Panagala M., Biruntha M., Vidhyavathi R., Sivagurunathan P., Senthilkumar S., Sekarf D. Dissecting the role of miR-21 in different types of stroke. Gene. 2019; 681: 69-72. https://doi.org/10.10Wj.gene.2018.09.048.
  8. Konovalova J., Gerasymchuk D., Parkkinen I., Chmielarz P., Domanskyi A. Interplay between MicroRNAs and Oxidative Stress in Neurodegenerative Diseases. International journal of molecular sciences. 2019; 20 (23): 1-26. https://doi.org/10.3390/ijms20236055
  9. Mirzaei H., Momeni F., Saadatpour L., Sahebkar A., Goodarzi M., Masoudifar A., Kouhpayeh S., Salehi H., Mirzaei H.R., Jaafari M.R. MicroRNA: Relevance to stroke diagnosis, prognosis, and therapy. J. of Cell Physiology. 2018; 233 (2): 856-65. https://doi.org/10.1002/jcp.25787.
  10. Akito H., Risa K. Dysregulation of microRNA biogenesis machinery in cancer. J. Critical Reviews in Biochemistry and Molecular Biology. 2016; 51 (3): 121-34. https://doi.org/10.3109/10409238.2015.1117054.
  11. Shubin L., Gregory G. MicroRNA biogenesis pathways in cancer. Nature Reviews Cancer. 2015; 15 (6): 321-33. https://doi.org/10.1038/nrc3932.
  12. Slaby O., Laga R., Sedlacek O. Therapeutic targeting of non-coding RNAs in cancer. Biochemical J. 2017; 474 (24): 4219-51. https://doi.org/10.1042/BCJ20170079.
  13. Luo Y.J., Huang Q.M., Ren Y, Liu Z.L., Xu C.F., Wang H., Xiao J.W. Non-coding RNA in drug resistance of gastric cancer. World J. Gastrointest Oncol. 2019; 11 (11): 957-70. https://doi.org/10.4251/wjgo.v11.i11.957.
  14. Poursheikhani A, Bahmanpour Z, Razmara E, Mashouri L, Taheri M, Morshedi Rad D, Yousefi H, Bitaraf A, Babashah S. Non-coding RNAs underlying chemoresistance in gastric cancer. Cell Oncol (Dordr). 2020; 43 (6): 961-88. https://doi.org/10.1007/s13402-020-00528-2.
  15. Kozomara A., Griffiths-Jones S. MiRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research. 2014; 42 (1): 68-73. https://doi.org/10.1093/nar/gkt1181.
  16. Vlachos I., Paraskevopoulou M., Karagkouni D., Georgakilas G., Vergoulis T., Kanellos I., Anastasopoulos I.L., Maniou S., Karathanou K., Kalfakakou D., Fevgas A., Dalamagas T., Hatzigeorgiou A. DANA-Tar-Base v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Research. 2015; 43: 153-9. https://doi.org/10.1093/nar/gku1215.
  17. Anneke B., Hausser J. MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation. BioEssays. 2014; 36 (6): 617-26. https://doi.org/10.1002/bies.201300104
  18. Friedman R., Farh K., Burge C., Bartel D. Most mammalian mRNAs are conserved targets of microRNAs. Genome Research. 2009; 19: 92-105. https://doi.org/10.1101/gr.082701.108.
  19. Chipman L., Pasquinelli A. MiRNA Targeting: Growing beyond the Seed. Trends in Genetics. 2019; 35 (3): 215-22. https://doi.org/10.1016/j.tig.2018.12.005.
  20. Oulas A., Karathanasis N., Louloupi A., Pavlopoulos G., Poirazi P., Kalantidis K., Ili-opoulos I. Prediction of miRNA targets. RNA Bioinformatics. 2015; 1269: 207-29. https://doi.org/10.1007/978-1-4939-2291-8_13.
  21. Oliveira A., Bovolenta L., Nachtigall P., Herkenhoff M., Lemke N., Pinhal1 D. Combining Results from Distinct MicroRNA Target Prediction Tools Enhances the Performance of Analyses. Frontiers in Genetics. 2017; 1-10. DOI: 10.3389/ fgene.2017.00059.
  22. Liu G., Zhang R., Xu J., Wu C.I., Lu W. Functional conservation of both CDS- and 3'-UTR-located microRNA binding sites between species. Molecular Biology and Evolution. 2015; 32 (3): 623-8. https://doi.org/10.1093/molbev/msu323.
  23. Yates A., Akanni W., Amode M.R., Barrell D., Billis K., Carvalho-Silva D., Cummins C., Clapham P., Fitzgerald S., Gil L., Giron C.G., Gordon L., Hourlier T., Hunt S.E., Janacek S.H., Johnson N., Juettemann T, Keenan, S., Lavidas I., Flicek P. Ensembl 2016. Nucleic Acids Research, 44 (D1): 710-6. https://doi.org/10.1093/nar/gkv1157
  24. O'Leary N., Wright M., Brister J., Ciufo S., Haddad D., McVeigh R., Rajput B., Robbertse B., Smith-White B., Ako-Adjei D., Astashyn A., Badretdin A., Bao Y, Blinkova O., Brover V, Chetvernin V, Choi J., Cox E., Ermolaeva O., Pruitt K. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Research. 44 (D1), 733-45. https://doi.org/10.1093/nar/gkv1189
  25. Karolchik D., Hinrichs A., Kent W.J. The UCSC Genome Browser. Current Protocols in Bioinformatics. 2009; 28 (1): 1.4.1-1.4.26. doi: 10.1002/0471250953.bi0104s28.
  26. Meseguer S., Mudduluru G., Escamilla J.M., Allgayer H. & Barettino D. MicroRNAs-10a and -10b Contribute to Retinoic Acid-induced Differentiation of Neuroblastoma Cells and Target the Alternative Splicing Regulatory Factor SFRS1 (SF2/ASF). J. of Biological Chemistry. 2011; 286 (6): 4150-64. https://doi.org/10.1074/jbc.m110.167817
  27. Gu W., Xu Y, Xie X., Wang T., Ko J., Zhou T. The role of RNA structure at 5' untranslated region in microRNA-mediated gene regulation. RNA a publication of RNA society. 2014; 20: 1369-75. https://doi.org/10.1261/rna.044792.114.
  28. Orom U., Nielsen F., Lund A. MicroRNA-10a Binds the 5'UTR of Ribosomal Protein mRNAs and Enhances Their Translation. Molecular Cell. 2008; 30 (4): 460-71. https://doi.org/10.1016/j.molcel.2008.05.001.
  29. Mandke P., Wyatt N., Fraser J., Bates B., Berberich S., Markey M. MicroRNA-34a modulates MDM4 expression via a target site in the open reading frame. PLoS ONE. 2012; 7 (8): e42034. https://doi.org/10.1371/journal.pone.0042034.
  30. He B., Xiao Y.F., Tang B., Wu Y.Y., Hu C.J., Xie R., Yang X., Yu S.T., Dong H., Zhao X.Y., Li J.L., Yang S.M. hTERT mediates gastric cancer metastasis partially through the indirect targeting of ITGB1 by microRNA-29a. Scientific Reports. 2016; 6: 1-12. https://doi.org/10.1038/srep21955.
  31. Erguna S., Oztuzcub S. Sequence-based analysis of 5'UTR and coding regions of CASP3 in terms of miRSNPs and SNPs in targetting miRNAs. Computational Biology and Chemistry. 2016; 62: 70-4. https://doi.org/10.1016/j.compbiolchem.2016.04.003.
  32. lachos I., Hatzigeorgiou A. Functional Analysis of miRNAs Using the DIANA Tools Online Suite. Drug Target miRNA. 2016; 1517: 25-50. https://doi.org/10.1007/978-1-4939-6563-2_2.
  33. Sulc M., Marin R., Robins H., Vanicek J. PAC-CMIT/PACCMIT-CDS: identifying microRNA targets in 3' UTRs and coding sequences. Nucleic Acids Research. 2015; 43 (1): 474-9. https://doi.org/10.1093/nar/gkv457.
  34. Xu W., San Lucas A., Wang Z., Liu Y. Identifying microRNA targets in different gene regions. BMC Bioinformatics. 2014; 15 (7): 4. https://doi.org/10.1186/1471-2105-15-S7-S4.
  35. Friedman R., Burge C. MicroRNA target finding by comparative genomics. RNA Sequence, Structure, and Function: Compu tational and Bioinformatic Methods. 2014; 1097: 457-76. https://doi.org/10.1007/978-1-62703-709-9_21.
  36. Wightman B., Ha I., Ruvkun G. Posttran-scriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993; 75: 855-62. https://doi.org/10.1016/0092-8674(93)90530-4.
  37. Mathews D. Revolutions in RNA Secondary Structure Prediction. Journal of Molecular Biology. 2006; 359 (3): 526-32. https://doi.org/10.1016/j.jmb.2006.01.067.
  38. Hofacker I.L., Fontana W., Stadler P.F., Bonhoeffer L.S., Tacker M., Schuster P. Fast folding and comparison of RNA secondary structures. Monatshefte Chemical. 1994; 125: 167-88. https://doi.org/10.1007/BF00818163.
  39. Gruber A., Bernhart S., Lorenz R. The ViennaRNA web services. RNA Bioinformatics. 2015; 1269: 307-26. https://doi.org/10.1007/978-1-4939-2291-8_19.
  40. Kertesz M., Iovino N., Unnerstall U., Gaul U., Segal E. The role of site accessibility in microRNA target recognition. Nature Genetics. 2007; 39: 1278-84. https://doi.org/10.1038/ng2135.
  41. Benhalevya D., Mc Farland H., Sarshada A., Hafnera M. PAR-CLIP and streamlined small RNA cDNA library preparation protocol for the identification of RNA binding protein target sites. Methods. 2017; 118-119: 41-9. https://doi.org/10.1016/j.ymeth.2016.11.009.
  42. Weng H., Huilin H., Chen J. RNA N 6-Methy-ladenosine Modification in Normal and Malignant Hematopoiesis. Leukemia Stem Cells in Hematologic Malignancies. 2019; 1143: 75-93. https://doi.org/10.1007/978-981-13-7342-8_4.
  43. Deng X., Su R., Hengyu Weng H., Huang H., Li Z., Chen J. RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Research. 2018; 28 (5): 507-17. https://doi.org/10.1038/s41422-018-0034-6.
  44. Hsu J., Chiu C.M., Hsu S.D., Huang W.Y., Chien C.H., Lee T.Y., Huang H.D. MiRTar: An integrated system for identifying miRNA-target interactions in human. BMC Bioinformatics. 2011; 12: 300. https://doi.org/10.1186/1471-2105-12-300.
  45. Lewis B., Burge C., Bartel D. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120 (1): 15-20. https://doi.org/10.10Wj.cell.2004.12.035
  46. Kanoria S., Rennie W., Liu C., Carmack S., Lu J., Ding Y. STarMir Tools for Prediction of microRNA Binding Sites. RNA Structure Determination. 2016; 1490: 73-82. https://doi.org/10.1007/978-1-4939-6433-8_6.
  47. Maragkakis M., Reczko M., Simossis V, Alexiou P., Papadopoulos G., Dalamagas T, Giannopoulos G., Goumas G., Koukis E., Kourtis K., Vergoulis T., Koziris N., Sellis T, Tsanakas P., Hatzigeorgiou A. DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Research. 2009; 37: 273-6. https://doi.org/10.1093/nar/gkp292.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies