Saliva concentration of sirtuins: perspectives of application for coronary heart disease diagnostics and aging rate


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The aim is the comparative analysis of saliva concentration of sirtuins, in middle age and elderly people without cardiovascular pathology (CP) and with coronary heart disease (CHD). Methods. Saliva was obtained from healthy donors (73 persons without CP, «norm») and 68 CHD patients of middle age and elderly age. Sirt1, Sirt3, Sirt4, Sirt5, Sirt6, Sirt7concentrations were verified in saliva by enzymoimmunoassay. Results. Sirt1, Sirt6, Sirt7 concentrations in saliva in elderly patients from the group «norm» were 1.5-1.6 times lower in comparison with this value in middle-aged patients. Sirt1, Sirt 3, Sirt6, Sirt7 concentrations in saliva in middle-aged and elderly CHD patients were 1.4-4.2 times lower in comparison with the same values in patients of this age in group «norm». Sirt1, Sirt6, Sirt7 concentrations in saliva in elderly CHD patients were 1.5-2.1 times lower in comparison with these values in middle age CHD patients. Conclusions. The Sirt1, Sirt6, Sirt7 saliva study in healthy middle and old people can be used in a comprehensive assessment of biological age . The estimation of Sirt1, Sirt3, Sirt6, Sirt7 concentration in saliva in middle age and elderly patients may be the perspective predictive method of CHD.

Full Text

Restricted Access

About the authors

Natalia Sergeevna Linkova

Belgorod National Research University; Academy of postgraduate education under FSBUFSCC of FMBA of Russia; Saint Petersburg Institute of Bioregulation and Gerontology

Email: miayy@yandex.ru
doctor of biological sciences, associate professor, the head of the laboratory of Molecular mechanisms of aging of Biogerontology department; geriatrics and anti-age medicine; senior researcher of the laboratory “Problems of aging”

Anastasiia Eduardovna Pychalskaya

Saint Petersburg Institute of Bioregulation and Gerontology

Email: nastyapuh96@mail.ru
the scientific research of the laboratory of molecular mechanisms of aging

Andrey Nikolaevich Il’nitskii

Belgorod National Research University; Academy of postgraduate education under FSBUFSCC of FMBA of Russia

Email: a-ilnitski@yandex.ru
the head of the Department of therapy, geriatrics and antiaging medicine of Academy of postgraduate education

Uliana Alexandrovna Novak-Bobarikina

Saint-Petersburg State University

Email: ulyana.boba0304@mail.ru
postgraduate student of the Pathology Department

Ol’ga Alexandrovna Osipova

Belgorod National Research University

Email: osipova@bsu.edu.ru
associate Director of the Center of Additional Medical and Pharmaceutical Education, Accreditation and Certification of Medical Institute and Professor of Therapy Department

Ol’ga Anatol’evna Rozhdestvenskaya

Belgorod National Research University

Email: longtermcare.fmba@gmail.com
the docent of the Department of therapy, geriatrics and antiaging medicine

Kirill Lenarovich Kozlov

Saint Petersburg Institute of Bioregulation and Gerontology

Email: kozlov_kl@mail.ru
the head of the Department of Clinical Gerontology and Geriatry

References

  1. Щербакова А.В., Бараховская ТВ. Хроническая ишемическая болезнь сердца у пожилых: пособие для врачей. Иркутск: РИО ГБОУ ДПО ИГМАПО, 2016; 38.
  2. Proshchaev K.I., Il'nitskii A.N., Kvetno I.M., Kniaz'kin I.V., Zeziulin PIa., Konovalov S.S., Filippov S.V. Changes of the endothelium in cardiovascular pathology in the elderly Part I. Signal molecules and endothelial functions. Klin. Med. 2007; 85 (11): 9-13.
  3. Солодилова М.А., Медведева М.В., Быканова М.А., Васильева О.В., Иванов В.П. Полиморфизм гена VEGFA, курение и ишемическая болезнь сердца: значимость генно-средовых взаимодействий для развития заболевания. Научные результаты биомедицинских исследований. 2020; 6 (3): 350-66. https://doi.org/10.18413/2658-6533-2020-6-3-0-6
  4. Saraev G.B., Mironova E.S., Linkova N.S., Bunin V.A., Paltsev M.A., Kvetnoy I.M. Investigation of signal molecules in saliva: prospects of application for diagnostics of myocardial infarction and the aging rate of different age people. Adv. Gerontol. 2019; 32 (3): 364-9.
  5. Пальцев М.А., Сараев Г.Б., Бунин В.А., Белушкина Н.Н., Поправка Е.С., Линькова Н.С., Козлов К.Л., Седова Е.В., Мурсалов С.У., Кветной И.М. Слюна как биологический объект для неинвазивной молекулярной диагностики сердечнососудистых заболеваний. Молекулярная медицина. 2018; 16 (5): 3-8. https://doi.org/:10.29296/24999490-2018-05-01
  6. Chojnowska S., Baran T., Wilinska I., Sienicka P., Cabaj-Wiater I., Kna M. Human saliva as a diagnostic material. Adv. Med. Sci. 2018; 63 (1): 185-91. https://doi.org/10.1016/j.advms.2017.11.002.
  7. Castagnola M., Scarano E., Passali G.C., Messana I., Cabras T., Iavarone F., Di Cintio G., Fiorita A., De Corso E., Paludetti G. Salivary biomarkers and proteomics: future diagnostic and clinical utilities. Acta Otorhinolaryngol. Ital. 2017; 37 (2): 94-101. https://doi.org/10.14639/0392-100X-1598.
  8. Ianni A., Yuan X., Bober E., Braun T. Sirtuins in the Cardiovascular System: Potential Targets in Pediatric Cardiology. Pediatric Cardiology 2018; 39: 983-92. https://doi.org/10.1007/s00246-018-1848-1.
  9. Pukhalskaia A.E., Dyatlova A.S., Linkova N.S., Kozlov K.L., Kvetnaia T.V, Koroleva M.V, Kvetnoy I.M. Sirtuins as possible predictors of aging in Alzheimer's disease development: verification in the hippocampus and saliva. Bull. Exp. Biol. Med. 2020; 106 (6): 821-4. https://doi.org/10.1007./s105.17-020-04986-4
  10. Potthast A.B., Heuer T., Warneke S.J., Das A.M. Alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency. PLoS ONE. 2017; 12 (10): e0186517. https://doi.org/10.1371/journal.pone.0186517
  11. Yang B., Xu B., Zhao H., Wang Y.B., Zhang J., Li C.W., Wu Q., Cao Y.K., Li Y., Cao F. Dioscin protects against coronary heart disease by reducing oxidative stress and inflammation via Sirt1/Nrf2 and p38 MAPK pathways. Mol. Med. Rep. 2018; 18 (1): 973-80. https://doi.org/10.3892/mmr.2018.9024.
  12. Yuan X., Qi H., Li X., Wu F., Fang J., Bober E., Dobreva G., Zhou Y.,. Braun T. Disruption of spatiotemporal hypoxic signaling causes congenital heart disease in mice. J. Clin. Invest. 2017; 127 (6): 2235-48. https://doi.org/10.1172/JCI88725.
  13. Opstad T.B., Kalstad A.A., Holte K.B., Berg T.J., Solheim S., Arnesen H., Seljeflot I. Shorter Leukocyte Telomere Lengths in Healthy Relatives of Patients with Coronary Heart Disease. Rejuvenation Res. 2020; 23 (4): 324-32. https://doi.org/10.1089/rej.2019.2258
  14. Du S., Shen S., Ding S., Wang L. Suppression of microRNA-323-3p restrains vascular endothelial cell apoptosis via promoting sirtuin-1 expression in coronary heart disease. Life Sci. 2021; 270: 119065. https://doi.org/10.1016/j.lfs.2021.119065
  15. Inamori T., Goda T., Kasezawa N., Yamakawa-Kobayashi K. The combined effects of genetic variation in the SIRT1 gene and dietary intake of n-3 and n-6 polyunsaturated fatty acids on serum LDL-C and HDL-C levels: a population based study. Lipids Health Dis. 2013; 12: 4. https://doi.org/10.1186/1476-511X-12-4.
  16. Kida Y., Goligorsky M.S. Sirtuins, Cell Senescence, and Vascular Aging. Can J. Cardiol. 2016; 32 (5): 634-41. https://doi.org/10.1016/j.cjca.2015.11.022.
  17. Bi S., Liu Z., Wu Z., Wang Z., Liu X., Wang S., Ren J., Yao Y., Zhang W., Song M., Liu G.H., Qu J. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. J. Protein Cell. 2020; 11 (7): 483-504. https://doi.org/10.1007/s13238-020-00728-4.
  18. Horvath S., Gurven M., Levine M.E., Trumble B.C., Kaplan H., Allayee H., Ritz B.R., Chen B., Lu A.T., Rickabaugh T.M., Jamieson B.D., Sun D., Li S., Chen W., Quintana-Murci L., Fagny M., Kobor M.S., Tsao P.S., Reiner A.P., Edlefsen K.L., Absher D., Assimes T.L. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016; 17 (1): 171. https://doi.org/10.1186/s13059-016-10300
  19. Al-Rawi N.H., Shahid A.M. Oxidative stress, antioxidants, and lipid profile in the serum and saliva of individuals with coronary heart disease: is there a link with periodontal health? Minerva Stomatol. 2017; 66 (5): 212-25. https://doi.org/10.23736/S0026-4970.17.04062-6
  20. McGeer P.L., Lee M., Kennedy K., McGeer E.G. Saliva Diagnosis as a Disease Predictor, J. Clin. Med. 2020; 9 (2): 377. https://doi.org/10.3390/jcm9020377
  21. Mahmood Z., Enocsson H., Back M., Chung R.W.S., Lundberg A.K., Jonasson L. Salivary and plasma levels of matrix metalloproteinase-9 and myeloperoxidase at rest and after acute physical exercise in patients with coronary artery disease. PLoS One. 2019; 14 (2): e0207166. https://doi.org/10.1371/journal.pone.0207166
  22. Fic P., Kowalczuk K., Grabarska A., Stepulak A. MicroRNA--a new diagnostic tool in coronary artery disease and myocardial infarction. Postepy Hig Med Dosw. 2014; 68: 410-8. https://doi.org/0.5604/17322693.1100348
  23. Prestes P.R., Maier M.C., Woods B.A., Charchar F.J. A Guide to the Short, Long and Circular RNAs in Hypertension and Cardiovascular Disease. Int. J. Mol Sci. 2020; 21(10): 3666. https://doi.org/0.3390/ijms21103666

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies