Role of reactive glia in modulation of neuroand synaptogenesis in vitro


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Activation of glial cells by lipopolysaccharide leads to the release of proinflammatory cytokines and the development of neuroinflammation, which, in turn, affects the processes of neuro- and synaptogenesis. However, the specific mechanisms of neuroglial and astrocytemicroglial interactions in these processes remain the subject of discussion. Aim of the study. Our aim was to study the role of microglia in the acquisition of a reactive phenotype by astrocytes in vitro, and the effect of lipopolysaccharide and astrocyte-conditioned medium on the neuro- and synaptogenesis of hippocampal neurons in vitro by immunocytochemistry methods. Methods. The study was carried out on glial and neuronal cell cultures from rat hippocampus. Lipopolysaccharide was added to mixed glial culture and pure astrocyte culture at concentrations of 1 and 10 μg/ml for 6, 12 and 24 hours. The cells were then fixed, stained for astrocytic marker GFAP. Lipopolysaccharide at a concentration of 10 μg/ml at 6 and 12 hours, as well as an astrocyte-conditioned medium were added to the culture of hippocampal neurons which were later fixed and stained for the marker of cell proliferation Ki67, presynaptic (Syn1) andpostsynaptic (PSD95) proteins. Results. The number of GFAP increased in mixed glial cultures after 6 and 12 h of incubation with lipopolysaccharide; in astrocyte culture, GFAP on the contrary, decreased. The addition of lipopolysaccharide and astrocyte-conditioned medium to neurons led to a decrease in cell proliferation and an increase in the amount of postsynaptic protein PSD95, while the amount of Syn1 changed only in case when lipopolysaccharide was added directly to neurons. Conclusion. In our work it was determined that astrocytes acquire a characteristic reactive phenotype only in the presence of microglial cells in vitro, as evidenced by an increase in the amount of GFAP. Astrocytes incubated with lipopolysaccharide are capable of modulating neuronal proliferation and synaptogenesis processes in vitro.

Full Text

Restricted Access

About the authors

Anna Vyacheslavovna Vinogradova

Immanuel Kant Baltic Federal University

Email: anna.vinogradova.97@yandex.ru
Master student School of Life Sciences

Oksana Pavlovna Tuchina

Immanuel Kant Baltic Federal University

Email: otuchina@kantiana.ru
head of laboratory for Synthetic biology, School of Life Sciences

References

  1. Ben Haim L., Rowitch D.H. Functional diversity of astrocytes in neural circuit regulation. Nature Reviews Neuroscience. 2016; 18 (1): 31-41. https://doi.org/10.1038/nrn.2016.159.
  2. Тучина О.П., Адамовская С.С. Региональная гетерогенность астроцитов в отношении экспрессии глиального фибриллярного кислого белка и синтетазы глутамина in vitro. Современные проблемы науки и образования. 2020; 2: 158-62. https://doi.org/10.17513/spno.29751
  3. Franco R., Fernandez-Suarez D. Alternatively activated microglia and macrophages in the central nervous system. Progress in Neurobiology 2015; 131: 65-86. https://doi.org/10.1016/j.pneurobio.2015.05.003.
  4. Тучина О.П. Нейро-иммунные взаимодействия в холинергическом противовоспалительном пути. Гены и клетки. 2020; XV (1): 23-8. https://doi.org/10.23868/202003003
  5. Banks W.A., Robinson S.M. Minimal penetration of lipopolysaccharide across the murine blood-brain barrier. Brain Behav Immun. 2009; 24 (1): 102-9. https://doi.org/10.1016/j.bbi.2009.09.001.
  6. Патлай Н.И., Сотников Е.Б., Курилова Е.А., Тучина О.П. Ранние изменения реактивного профиля глиальных клеток гиппокампа мыши в ответ на липополисахарид. Современные проблемы науки и образования. 2020; 6: 136-9. https://doi.org/10.17513/spno.30310
  7. Сотников Е.Б., Патлай Н.И., Николаева А.Ю., Тучина О.П. Экспрессия глиальных маркеров, цитокинов и маркеров нейрогенеза в гиппокампе мыши при старении и в ответ на липополисахарид. Молекулярная медицина. 2021; 19 (3): 38-43. https://doi.org/10.29296/24999490-2021-03-06
  8. Патлай Н.И., Сотников Е.Б., Тучина О.П. Роль микроглиальных цитокинов в модуляции нейрогенеза во взрослом мозге. Международный журнал прикладных и фундаментальных исследований. 2020; 5: 15-23. https://doi.org/10.17513/mjpfi.13062
  9. Liddelow S.A., Guttenplan K.A., Clarke L.E., Bennett F.C., Bohlen C.J., Schirmer L., Bennett M.L., Munch A.E., Chung W.-S., Peterson T.C., Wilton D.K., Frouin A., Napier B.A., Panicker N., Kumar M., Buckwalter M.S., Rowitch D.H., Dawson V.L., Dawson T.M., Stevens B., Barres B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017; 541: 481-7. https://doi.org/10.1038/nature21029.
  10. You L.-H., Yan C.-Z., Zheng B.-J., Ci Y.-Z., Chang S.-Y, Yu P., Gao G.-F, Li H.-Y, Dong T.-Y., Chang Y-Z. Astrocyte hepcidin is a key factor in LPS-induced neuronal apoptosis. Cell Death Dis. 2017; 8: e2676. https://doi.org/10.1038/cddis.2017.93.
  11. Tamashiro T.T., Dalgard C.L., Byrnes K.R. Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue. J. Vis Exp. 2012; 2: e3814. https://doi.org/10.3791/3814.
  12. Beaudoin G.M.J., Lee S.-H., Singh D., Yuan Y, Ng Y-G., Reichardt L.F, Arikkath J. Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat Protoc. 2012; 7: 1741-54. https://doi.org/10.1038/nprot.2012.099
  13. Middeldorp J., Hol E.M. GFAP in health and disease. Progress in Neurobiology 2011; 421-43. https://doi.org/10.1016/j.pneuro-bio.2011.01.005
  14. Leow-Dyke S., Allen C., Denes A., Nilsson O., Maysami S., Bowie A.G., Rothwell N.J., Pinteaux E. Neuronal Toll-like receptor 4 signaling induces brain endothelial activation and neutrophil transmigration in vitro. J. Neuroinflammation. 2012; 9: 230-5. https://doi.org/10.1186/1742-2094-9-230

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies