Posttranslational phosphorylation and fragmentation of cardiac troponin T: mechanisms and significance

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Among a very significant number of possible variants of posttranslational modifications (PTM) affecting the contractile function of the myocardium, the most significant effect is exerted by posttranslational phosphorylation of protein components of the contractile apparatus. This type of PTM is carried out due to the action of kinase enzymes (phosphotransferases) that catalyze the transfer of a phosphate group to amino acid residues of proteins of the contractile apparatus. A change in the phosphorylation activity leads to a change in the function of the corresponding modified protein, which is accompanied by a change in the contractile function of the entire myocardium. At the same time, the phosphorylation activity of certain contractile proteins can change both in physiological conditions and in some cardiovascular diseases (CVD), including heart failure, acute myocardial infarction and cardiac arrhythmias. In addition, with these pathological conditions, the activity of proteolytic enzymes that cause fragmentation of protein molecules significantly changes. The purpose. To systematize information about the main mechanisms of posttranslational phosphorylation and fragmentation of the cardiac troponin T (cTnT) molecule and note their importance in the pathogenesis and diagnosis of CVD. Material and methods. Analysis of the main foreign and domestic sources on PubMed/Medline, Embase, RSCI/elibrary databases over the past 30 years. Results. According to the results of the review, a significant effect of the discussed PTMs on the pathophysiology and laboratory diagnosis of CVD was shown: 1) an increase in cTnT phosphorylation is mainly accompanied by a decrease in myocardial contractile function; the level of phosphorylated cTnT molecules in blood serum may reflect the status of intracellular phosphorylation, and, accordingly, be used for diagnostic and prognostic purposes; 2) fragmentation of the cTnT molecule into smaller fragments promotes earlier release from cardiomyocytes, and by identifying these fragments using immunoassays, early diagnosis of CVD can be improved; these small cTnTfragments can also pass through a hematosalivary and glomerular filter, allowing the use of saliva and oral fluid as a non-invasively obtained biological material, 3) the cleavage of the cTnT molecule by the enzyme thrombin in the myocardium of patients sufferingfrom cardiomyopathy can be considered as an additional pathophysiological mechanism that disrupts the contractile function of the myocardium.

Full Text

Restricted Access

About the authors

Aleksey Mikhailovich Chaulin

Samara Regional Cardiology Dispensary; Samara State Medical University

Author for correspondence.
Email: alekseymichailovich22976@gmail.com

post-graduate student, assistant of the department of histology and embryology; MD, doctor of clinical of laboratory diagnosis

References

  1. Чаулин А.М., Дупляков Д.В. Биомаркеры острого инфаркта миокарда: диагностическая и прогностическая ценность. Часть 1. Клиническая практика. 2020; 11 (3): 75-84. https://doi.org/10.17816/clinpract34284
  2. Чаулин А.М., Абашина О.Е., Дупляков Д.В. Высокочувствительные сердечные тропонины (hs-Tn): методы определения и основные аналитические характеристики. Кардиоваскулярная терапия и профилактика. 2021; 20 (2): 2590. https://doi.org/10.15829/1728-8800-2021-2590
  3. Gomes A.V., Potter J.D., Szczesna-Cordary D. The role of troponins in muscle contraction. IUBMB Life. 2002; 54 (6): 323-33. https://doi.org/10.1080/15216540216037
  4. Filatov V.L., Katrukha A.G., Bulargina T.V., Gusev N.B. Troponin: structure, properties, and mechanism of functioning. Biochemistry (Mosc). 1999; 64 (9): 969-85. https://pubmed.ncbi.nlm.nih.gov/10521712/
  5. Solaro R.J.Integration of myofilament response to Ca2+ with cardiac pump regulation and pump dynamics. Am. J. Physiol. 1999; 277 (6 Pt 2): 155-63. https://doi.org/10.1152/advances.1999.277.6.S155
  6. Rouslin W., Broge C.W Isoform-independent heart rate-related variation in cardiac myofibrillar Ca(2+)-activated Mg(2+)-ATPase activity. Am. J. Physiol. 1996; 270 (5 Pt 1): 1271-6. https://doi.org/10.1152/ajpcell.1996.270.5.C1271
  7. Moreira C.M., Meira E.F., Vestena L., Stefanon I., Vassallo D.V, Padilha A.S. Tension cost correlates with mechanical and biochemical parameters in different myocardial contractility conditions. Clinics (Sao Paulo). 2012; 67 (5): 489-96. https://doi.org/10.6061/clinics/2012(05)14
  8. Dong X., Sumandea C.A., Chen Y.C., Garcia-Cazarin M.L., Zhang J., Balke C.W., Sumandea M.P., Ge Y. Augmented phosphorylation of cardiac troponin I. in hypertensive heart failure. J. Biol. Chem. 2012; 287 (2): 848-57. https://doi.org/10.1074/jbc.M111.293258
  9. Чаулин А.М., Свечков Н. А., Волкова С.Л., Григорьева Ю.В. Диагностическая ценность сердечных тропонинов у пожилых пациентов, не страдающих инфарктом миокарда. Современные проблемы науки и образования. 2020; 6. https://doi.org/10.17513/spno.30302. URL: http://science-education.ru/ru/article/view?id=30302
  10. Чаулин А.М., Дупляков Д.В. Повышение кардиальных тропонинов, не ассоциированное с острым коронарным синдромом. Часть 1. Кардиология: новости, мнения, обучение. 2019; 7 (2): 13-23. https://doi.org/10.24411/2309-1908-2019-12002.
  11. Чаулин А.М., Дупляков Д.В. Повышение кардиальных тропонинов, не ассоциированное с острым коронарным синдромом. Часть 2. Кардиология: новости, мнения, обучение. 2019; 7 (2): 24-35. https://doi.org/10.24411/2309-1908-2019-12003.
  12. Pervan P., Svagusa T., Prkacin I., Savuk A., Bakos M., Perkov S. Urine high sensitive Troponin I. measuring in patients with hypertension. Signa Vitae. 2017; 13: 62-4. https://doi.org/10.22514/sv133.062017.13
  13. Чаулин А.М., Дуплякова П.Д., Бикбаева Г.Р., Тухбатова А.А., Григорьева Е.В., Дупляков Д.В. Концентрация высокочувствительного тропонина I. в ротовой жидкости у пациентов с острым инфарктом миокарда: пилотное исследование. Российский кардиологический журнал. 2020; 25 (12): 3814. https://doi.org/10.15829/1560-4071-2020-3814.
  14. Чаулин А.М., Карслян Л.С., Григорьева E.В., Нурбалтаева Д.А., Дупляков Д.В. Клинико-диагностическая ценность кардиомаркеров в биологических жидкостях человека. Кардиология. 2019; 59 (11): 66-75. https://doi.org/10.18087/cardio.2019.11.n414
  15. Anderson P.A., Greig A., Mark T.M., Malouf N.N., Oakeley A.E., Ungerleider R.M., Allen P.D., Kay B.K. Molecular basis of human cardiac troponin T. isoforms expressed in the developing, adult, and failing heart. Circ Res. 1995; 76 (4): 681-6. https://doi.org/10.1161/01.res.76A681
  16. Mesnard-Rouiller L., Mercadier J.J., Butler-Browne G., Heimburger M., Logeart D., Allen P.D., Samson F. Troponin T. mRNA and protein isoforms in the human left ventricle: pattern of expression in failing and control hearts. J. Mol. Cell. Cardiol. 1997; 29 (11): 3043-55. https://doi.org/10.1006/jmcc.1997.0519
  17. Дупляков Д.В., Чаулин А.М. Мутации сердечных тропонинов, ассоциированные с кардиомиопатиями. Кардиология: новости, мнения, обучение. 2019; 7 (3): 8-17. https://doi.org/10.24411/2309-1908-2019-13001.
  18. Villar-Palasi C., Kumon A. Purification and properties of dog cardiac troponin T. kinase. J. Biol. Chem. 1981; 256 (14): 7409-15. https://pubmed.ncbi.nlm.nih.gov/7251602/
  19. Gusev N.B., Barskaya N.V., Verin A.D., Duzhenkova I.V., Khuchua Z.A., Zheltova A.O. Some properties of cardiac troponin T. structure. Biochem J. 1983; 213 (1): 123-9. https://doi.org/10.1042/bj2130123
  20. Noland T.A. Jr., Raynor R.L., Kuo J.F. Identification of sites phosphorylated in bovine cardiac troponin I. and troponin T. by protein kinase C. and comparative substrate activity of synthetic peptides containing the phosphorylation sites. J. Biol. Chem. 1989; 264 (34): 20778-85. https://pubmed.ncbi.nlm.nih.gov/2584239/
  21. Swiderek K., Jaquet K., Meyer H.E., Schächtele C., Hofmann F., Heilmeyer L.M. Jr. Sites phosphorylated in bovine cardiac troponin T. and I. Characterization by 31P-NMR spectroscopy and phosphorylation by protein kinases. Eur. J. Biochem. 1990; 190 (3): 575-82. https://doi.org/10.1111/j.1432-1033.1990.tb15612.x
  22. Noland T.A. Jr., Kuo J.F. Protein kinase C. phosphorylation of cardiac troponin T. decreases Ca(2+)-dependent actomyosin MgATPase activity and troponin T. binding to tropomyosin-F-actin complex. Biochem J. 1992; 288 (Pt 1): 123-9. https://doi.org/10.1042/bj2880123
  23. Sumandea M.P., Pyle W.G., Kobayashi T., de Tombe P.P., Solaro R.J. Identification of a functionally critical protein kinase C. phosphorylation residue of cardiac troponin T. J. Biol. Chem. 2003; 278 (37): 35135-44. https://doi.org/10.1074/jbc.M306325200
  24. Sumandea M.P., Burkart E.M., Kobayashi T., De Tombe P.P., Solaro R.J. Molecular and integrated biology of thin filament protein phosphorylation in heart muscle. Ann. N. Y. Acad. Sci. 2004; 1015: 39-52. https://doi.org/10.1196/annals.1302.004
  25. Steinberg S.F. Cardiac actions of protein kinase C. isoforms. Physiology (Bethesda). 2012; 27 (3): 130-9. https://doi.org/10.1152/physiol.00009.2012
  26. Jideama N.M., Noland T.A. Jr., Raynor R.L., Blobe G.C., Fabbro D., Kazanietz M.G., Blumberg P.M., Hannun Y.A., Kuo J.F. Phosphorylation specificities of protein kinase C. isozymes for bovine cardiac troponin I. and troponin T. and sites within these proteins and regulation of myofilament properties. J. Biol. Chem. 1996; 271 (38): 23277-83. https://doi.org/10.1074/jbc.271.38.23277
  27. Wu S.C., Solaro R.J. Protein kinase C. zeta. A novel regulator of both phosphorylation and de-phosphorylation of cardiac sarcomeric proteins. J. Biol. Chem. 2007; 282 (42): 30691-8. https://doi.org/10.1074/jbc.M703670200
  28. Steinberg S.F., Goldberg M., Rybin V.O. Protein kinase C. isoform diversity in the heart. J. Mol. Cell. Cardiol. 1995; 27 (1): 141-53. https://doi.org/10.1016/s0022-2828(08)80014-4
  29. Even-Faitelson L., Ravid S. PAK1 and aPKCzeta regulate myosin II-B phosphorylation: a novel signaling pathway regulating filament assembly Mol. Biol. Cell. 2006; 17 (7): 2869-81. https://doi.org/10.1091/mbc.e05-11-1001
  30. Buscemi N., Foster D.B., Neverova I., Van Eyk J.E. p21-activated kinase increases the calcium sensitivity of rat triton-skinned cardiac muscle fiber bundles via a mechanism potentially involving novel phosphorylation of troponin I. Circ. Res. 2002; 91 (6): 509-16. https://doi.org/10.1161/01.res.0000035246.27856.53
  31. Ke Y., Wang L., Pyle W.G., de Tombe P.P., Solaro R.J.Intracellular localization and functional effects of P21-activated kinase-1 (Pak1) in cardiac myocytes. Circ. Res. 2004; 94 (2): 194-200. https://doi.org/10.1161/01. RES.0000111522.02730.56
  32. Monasky M.M., Taglieri D.M., Patel B.G., Chernoff J., Wolska B.M., Ke Y., Solaro R.J. p21-activated kinase improves cardiac contractility during ischemia-reperfusion concomitant with changes in troponin-T and myosin light chain 2 phosphorylation. Am. J. Physiol. Heart Circ. Physiol. 2012; 302 (1): 224-30. https://doi.org/10.1152/ajpheart.00612.2011
  33. Jideama N.M., Crawford B.H., Hussain A.K., Raynor R.L. Dephosphorylation specificities of protein phosphatase for cardiac troponin I., troponin T., and sites within troponin T. Int. J. Biol. Sci. 2006; 2 (1): 1-9. https://doi.org/10.7150/ijbs.2.1
  34. Gotoh Y., Cooper J.A. Reactive oxygen species- and dimerization-induced activation of apoptosis signal-regulating kinase 1 in tumor necrosis factor-alpha signal transduction. J. Biol. Chem. 1998; 273 (28): 17477-82. https://doi.org/10.1074/jbc.273.28.17477
  35. He X., Liu Y., Sharma V., Dirksen R.T., Waugh R., Sheu S.S., Min W. ASK1 associates with troponin T. and induces troponin T. phosphorylation and contractile dysfunction in cardiomyocytes. Am. J. Pathol. 2003; 163 (1): 243-51. https://doi.org/10.1016/S0002-9440(10)63647-4
  36. Vahebi S., Kobayashi Т., Warren C.M., de Tombe P.P., Solaro R.J. Functional effects of rhokinase-dependent phosphorylation of specific sites on cardiac troponin. Circ Res. 2005; 96 (7): 740-7. https://doi.org/10.1161/01. RES.0000162457.56568.7d
  37. Sumandea M.P., Vahebi S., Sumandea C.A., Garcia-Cazarin M.L., Staidle J., Homsher E. Impact of cardiac troponin T. N-terminal deletion and phosphorylation on myofilament function. Biochemistry. 2009; 48 (32): 7722-31. https://doi.org/10.1021/bi900516n
  38. Pfleiderer P., Sumandea M.P., Rybin V.O., Wang C., Steinberg S.F. Raf-1: a novel cardiac troponin T. kinase. J. Muscle Res Cell Motil. 2009; 30 (1-2): 67-72. https://doi.org/10.1007/s10974-009-9176-y
  39. Noguchi Т., Hünlich M., Camp P.C., Begin K.J., El-Zaru M., Patten R., Leavitt B.J., Ittleman F.P., Alpert N.R., LeWinter M.M., VanBuren P. Thin-filament-based modulation of contractile performance in human heart failure. Circulation. 2004; 110 (8): 982-7. https://doi.org/10.1161/01.CIR.0000139334.43109.F9
  40. Goldspink PH., Montgomery D.E., Walker L.A., Urboniene D., McKinney R.D., Geenen D.L., Solaro R.J., Buttrick P.M. Protein kinase Cepsilon overexpression alters myofilament properties and composition during the progression of heart failure. Circ Res. 2004; 95 (4): 424-32. https://doi.org/10.1161/01. RES.0000138299.85648.92
  41. Belin R.J., Sumandea M.P., Sievert G.A., Harvey L.A., Geenen D.L., Solaro R.J., de Tombe P.P. Interventricular differences in myofilament function in experimental congestive heart failure. Pflugers Arch. 2011; 462 (6): 795-809. https://doi.org/10.1007/s00424-011-1024-4
  42. Walker L.A., Walker J.S., Ambler S.K., Buttrick P.M. Stage-specific changes in myofilament protein phosphorylation following myocardial infarction in mice. J. Mol. Cell. Cardiol. 2010; 48 (6): 1180-6. https://doi.org/10.1016/j.yjmcc.2009.09.010
  43. Avner B.S., Shioura K.M., Scruggs S.B., Grachoff M., Geenen D.L., Helseth D.L. Jr., Farjah M., Goldspink P.H., Solaro R.J. Myocardial infarction in mice alters sarcomeric function via post-translational protein modification. Mol Cell Biochem. 2012; 363 (1-2): 203-15. https://doi.org/10.1007/s11010-011-1172-z
  44. Van der Velden J., Merkus D., de Beer V., Hamdani N., Linke W.A., Boontje N.M., Stienen G.J., Duncker D.J. Transmural heterogeneity of myofilament function and sarcomeric protein phosphorylation in remodeled myocardium of pigs with a recent myocardial infarction. Front Physiol. 2011; 2: 83. https://doi.org/10.3389/fphys.2011.00083
  45. Dubois E., Richard V., Mulder P., Lamblin N., Drobecq H., Henry J.P., Amouyel P., Thuillez C., Bauters C., Pinet F. Decreased serine207 phosphorylation of troponin T. as a biomarker for left ventricular remodelling after myocardial infarction. Eur Heart J. 2011; 32 (1): 115-23. https://doi.org/10.1093/eurheartj/ehq108
  46. Eiras S., Narolska N.A., van Loon R.B., Boontje N.M., Zaremba R., Jimenez C.R., Visser F.C., Stooker W., van der Velden J., Stienen G.J. Alterations in contractile protein composition and function in human atrial dilatation and atrial fibrillation. J. Mol. Cell. Cardiol. 2006; 41 (3): 467-77. https://doi.org/10.1016/j.yjmcc.2006.06.072
  47. El-Armouche A., Boknik P., Eschenhagen T., Carrier L., Knaut M., Ravens U., Dobrev D. Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation. Circulation. 2006; 114 (7): 670-80. https://doi.org/10.1161/ CIRCULATIONAHA.106.636845
  48. Communal C., Sumandea M., de Tombe P., Narula J., Solaro R.J., Hajjar R.J. Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci USA. 2002; 99 (9): 6252-6. https://doi.org/10.1073/pnas.092022999
  49. Di Lisa F., De Tullio R., Salamino F., Barbato R., Melloni E., Siliprandi N., Schiaffino S., Pontremoli S. Specific degradation of troponin T. and I. by mu-calpain and its modulation by substrate phosphorylation. Biochem J. 1995; 308 (Pt 1): 57-61. https://doi.org/10.1042/bj3080057
  50. Zhang Z., Biesiadecki B.J., Jin J.P. Selective deletion of the NH2-terminal variable region of cardiac troponin T. in ischemia reperfusion by myofibril-associated mu-calpain cleavage. Biochemistry. 2006; 45 (38): 11681-94. https://doi.org/10.1021/bi060273s
  51. Mamidi R., Mallampalli S.L., Wieczorek D.F., Chandra M. Identification of two new regions in the N-terminus of cardiac troponin T. that have divergent effects on cardiac contractile function. J. Physiol. 2013; 591 (5): 1217-34. https://doi.org/10.1113/jphysiol.2012.243394
  52. Madsen L.H., Christensen G., Lund T., Serebruany V.L., Granger C.B., Hoen I., Grieg Z., Alexander J.H., Jaffe A.S., Van Eyk J.E., Atar D. Time course of degradation of cardiac troponin I. in patients with acute ST-elevation myocardial infarction: the ASSENT-2 troponin substudy. Circ Res. 2006; 99 (10): 1141-7. https://doi.org/10.1161/01.RES.0000249531.23654.e1
  53. Madsen L.H., Lund T., Grieg Z., Nygaard S., Holmvang L., Jurlander B., Grande P., Christensen G., Atar D. Cardiac troponin I. degradation in serum of patients with hypertrophic obstructive cardiomyopathy undergoing percutaneous septal ablation. Cardiology. 2009; 114 (3): 167-73. https://doi.org/10.1159/000226596
  54. Katrukha A.G., Bereznikova A.V., Filatov V.L., Esakova T.V., Kolosova O.V., Pettersson K., Lövgren T., Bulargina T.V., Trifonov I.R., Gratsiansky N.A., Pulkki K., Voipio-Pulkki L.M., Gusev N.B. Degradation of cardiac troponin I: implication for reliable immunodetection. Clin. Chem. 1998; 44 (12): 2433-40. https://pubmed.ncbi.nlm.nih.gov/9836709/
  55. Wu A.H., Feng Y.J., Moore R., Apple F.S., McPherson P.H., Buechler K.F., Bodor G. Characterization of cardiac troponin subunit release into serum after acute myocardial infarction and comparison of assays for troponin T. and I. American Association for Clinical Chemistry Subcommittee on cTnI Standardization. Clin. Chem. 1998; 44 (6 Pt 1): 1198-208. https://pubmed.ncbi.nlm.nih.gov/9625043/
  56. Чаулин А.М., Карслян Л.С., Григорьева Е.В., Нурбалтаева Д.А., Дупляков Д.В. Особенности метаболизма сердечных тропонинов (обзор литературы). Комплексные проблемы сердечнососудистых заболеваний. 2019; 8 (4): 103-15. https://doi.org/10.17802/2306-1278-2019-8-4-103-115.
  57. Labugger R., McDonough J.L., Neverova I., Van Eyk J.E. Solubilization, two-dimensional separation and detection of the cardiac myofilament protein troponin T. Proteomics. 2002; 2 (6): 673-8. https://doi.org/10.1002/1615-9861(200206)2:6<673::AID-PR0T673>3.0.C0;2-2
  58. Michielsen E.C., Diris J.H., Kleijnen V.W., Wodzig W.K., Van Dieijen-Visser M.P. Investigation of release and degradation of cardiac troponin T. in patients with acute myocardial infarction. Clin. Biochem. 2007; 40 (12): 851-5. https://doi.org/10.1016/j.clinbiochem.2007.04.004
  59. Diris J.H., Hackeng C.M., Kooman J.P., Pinto Y.M., Hermens W.T., van Dieijen-Visser M.P. Impaired renal clearance explains elevated troponin T. fragments in hemodialysis patients. Circulation. 2004; 109 (1): 23-5. https://doi.org/10.1161/01.CIR.0000109483.45211.8F
  60. Michielsen E.C., Diris J.H., Hackeng C.M., Wodzig W.K., Van Dieijen-Visser M.P. Highly sensitive immunoprecipitation method for extracting and concentrating low-abundance proteins from human serum. Clin. Chem. 2005; 51 (1): 222-4. https://doi.org/10.1373/clinchem.2004.036251
  61. Cardinaels E.P., Mingels A.M., van Rooij T., Collinson P.O., Prinzen F.W., van Dieijen-Visser M.P. Time-dependent degradation pattern of cardiac troponin T following myocardial infarction. Clin. Chem. 2013; 59 (7): 1083-90. https://doi.org/10.1373/clinchem.2012.200543
  62. deFilippi C., Seliger S.L., Kelley W., Duh S.H., Hise M., Christenson R.H., Wolf M., Gaggin H., Januzzi J. Interpreting cardiac troponin results from high-sensitivity assays in chronic kidney disease without acute coronary syndrome. Clin. Chem. 2012; 58 (9): 1342-51. https://doi.org/10.1373/clinchem.2012.185322
  63. Dubin R.F., Li Y., He J., Jaar B.G., Kallem R., Lash J.P., Makos G., Rosas S.E., Soliman E.Z., Townsend R.R., Yang W., Go A.S., Keane M., Defilippi C., Mishra R., Wolf M., Shlipak M.G. CRIC Study Investigators. Predictors of high sensitivity cardiac troponin T. in chronic kidney disease patients: a cross-sectional study in the chronic renal insufficiency cohort (CRIC). BMC Nephrol. 2013; 14: 229. https://doi.org/10.1186/1471-2369-14-229
  64. Katrukha I.A., Kogan A.E., Vylegzhanina A.V., Serebryakova M.V., Koshkina E.V., Bereznikova A.V., Katrukha A.G. Thrombin-Mediated Degradation of Human Cardiac Troponin T. Clin. Chem. 2017; 63 (6): 1094-100. https://doi.org/10.1373/clinchem.2016.266635
  65. Ito K., Hongo K., Date T., Ikegami M., Hano H., Owada M., Morimoto S., Kashiwagi Y., Katoh D., Yoshino T., Yoshii A., Kimura H., Nagoshi T., Kajimura I., Kusakari Y., Akaike T., Minamisawa S., Ogawa K., Minai K., Ogawa T., Kawai M., Yajima J., Matsuo S., Yamane T., Taniguchi I., Morimoto S., Yoshimura M. Tissue thrombin is associated with the pathogenesis of dilated cardiomyopathy. Int J. Cardiol. 2017; 228: 821-7. https://doi.org/10.1016/j.ijcard.2016.11.176

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Diagram of the structure of the TTC and its structural changes during contraction and relaxation Note. A – schema of the structure of the sarcomere. B – structure of the thin thread when the heart muscle relaxes, C-the structure of the thin thread when the heart muscle contracts. TnT – troponin T; TnI – troponin I; TnC – troponin C.

Download (215KB)

Copyright (c) 2022 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies