Lungs and liver remodeling depends on the presence of metastasis in melanoma B16-bearing mice

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Pre-metastatic niche formation precedes tumor dissemination although the mechanisms of it remain unclear. Therefore, the aim of the study was to evaluate the expression of molecules characterizing the microenvironment remodeling in target organs lungs and liver, depending on the presence of metastases in murine melanoma B16 in vivo. Material and methods. Melanoma B16 cells transplantation was carried out on C57Bl6 mice followed by the tumor development observation within 15 days. After that the mice were sacrificed. Tumors, lungs and livers tissues were fixed in formalin and embedded in paraffin. Tissues samples were stained with hematoxylin and eosin. Immunohistochemical study was provided with monoclonal antibodies to vascular endothelial growth factor A, smooth muscle actin-a, CD45RD and СD-31. Results. Metastasis were revealed in 33.3% of mice. In mice presented melanoma metastases to visceral organs, an increase in the expression of vascular endothelial growth factor A was found in the lungs, and smooth muscle actin- and CD31 in the liver, compared with these molecules expression in the group of animals without metastases. Besides, a strong positive correlation between the level of nonproliferating Ki-67-negative melanoma cells in the primary tumor and CD45RO expression in the lungs and liver was observed in metastasis-free animals. Conclusions. The results obtained indicate possible presence of intercellular communication between melanoma cells in the primary tumor and target organs at the premetastatic stage resulting in altering of antitumor resistance.

Full Text

Restricted Access

About the authors

Nadezhda Vladimirovna Palkina

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Author for correspondence.
Email: mosmannv@yandex.ru
assistant professor of pathophysiology department

Danil Sergeevich Zemtsov

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: danil_zemtsov@mail.ru
PhD student of pathophysiology department

Artyem Nikolaevich Narkevich

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: narkevichart@gmail.com
head of medical cybernetics and informatics

Yaroslavna Vladimirovna Bardetskaya

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: byvkgpu@yandex.ru
associated professor of pathophysiology department

Andrey Konstantinovich Kirichenko

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: krasak.07@mail.ru
professor of pathological anatomy department

Tatiana Genadevna Ruksha

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: tatyana_ruksha@mail.ru
head of pathophysiology department

References

  1. Massague J., Ganesh K. Metastasis-initiating cells and ecosystems. Cancer Discov. 2021; 11 (4): 971-94. https://doi.org/10.1158/2159-8290.CD-21-0010
  2. Fares J., Fares M.Y., Khachfe H.H., Salhab H.A., Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal. Transduct. Target Ther. 2020; 5 (1): 28-45. https://doi.org/10.1038/s41392-020-0134-x
  3. Yang C., Tian C., Hoffman T.E., Jacobsen N.K., Spencer S.L. Melanoma subpopulations that rapidly escape MAPK pathway inhibition incur DNA damage and rely on stress signaling. Nat.Commun. 2021; 12 (1747): 1-14. https://doi.org/10.1038/s41467-021-21549-x
  4. Aqbi H.F., Coleman C., Zarei M., Manjili S.Y., Graham L., Koblinski J., Guo C., Xie Y., Guruli G.,Bear H.D., Idowu M.O., Habibi M., Wang X.-Y, Manjili M.H. Local and distant tumor dormancy during early stage breast cancer are associated with the predominance of infiltrating T. effector subsets. Breast Cancer Res. 2020; 22 (1): 116. https://doi.org/10.1186/s13058-020-01357-9
  5. Suzuki M., Mose E.S., Montel V., Tarin D. Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. Am. J. Pathol. 2006; 169 (2): 673-81. https://doi.org/10.2353/ajpath.2006.060053
  6. Neophytou C.M., Kyriakou T.C., Papageorgis P. Mechanisms of metastatic tumor dormancy and implications for cancer therapy Int. J. Mol. Sci. 2019; 20 (24): 6158. https://doi.org/10.3390/ijms20246158
  7. Park S.Y., Nam J.S. The force awakens: metastatic dormant cancer cells. Exp. Mol. Med. 2020; 52 (4): 569-81. https://doi.org/10.1038/s12276-020-0423-z
  8. Chew V., Toh H.C., Abastado J.P. Immune microenvironment in tumor progression: characteristics and challenges for therapy J. Oncol. 2012; 2012: 608406. https://doi.org/10.1155/2012/608406
  9. Guo Y., Ji X., Liu J., Fan D., Zhou Q., Chen C., Wang W., Wang G., Wang H., Yuan W., Ji Z., Sun Z. Effects of exosomes on premetastatic niche formation in tumors. Mol. Cancer. 2019; 18 (1): 39-49. https://doi.org/10.1186/s12943-019-0995-1
  10. Рукша Т.Г., Аксененко М.Б., Гырылова С.Н. Злокачественные новообразования кожи: анализ заболеваемости в Красноярском крае, проблемы профилактики и совершенствования ранней диагностики. Вестник дерматологии и венерологии. 2010; 4: 4-9.
  11. International Guiding Principles for Biomedical Research Involving Animals issued by CIOMS. Vet Q. 1986; 8 (4): 350-2. https://doi.org/10.1080/01652176.1986.9694068
  12. Aksenenko M.B., Palkina N.V., Sergeeva O.N., Sergeeva E. Yu., Kirichenko A.K., Ruk sha T.G. miR-155 overexpression is followed by downregulation of its target gene, nFe2L2, and altered pattern of VEGFA expression in the liver of melanoma B16-bearing mice at the premetastatic stage. Int. J. Exp. Pathol. 2019; 100 (5-6): 311-9. https://doi.org/10.1111/iep.12342.9
  13. Аксененко М.Б., Шестакова Л.А., Рукша Т.Г. Особенности метастазирования перевиваемой меланомы В16 после ингибирования активности ММП-9. Сибирский онкологический журнал. 2012; 1 (49): 31-5.
  14. Sorrentino C., Miele L., Porta A., Pinto A., Morello S. Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angio-genesis in a mouse melanoma model. Oncotarget. 2015; 6 (29): 27478-89. https://doi.org/10.18632/oncotarget.4393
  15. Claesson-Welsh L., Welsh M. VEGFA and tumour angiogenesis. J.Intern. Med. 2013; 273 (2): 114-27. https://doi.org/10.1111/joim.12019
  16. Brodt T. Role of the microenvironment in liver metastasis: from pre- to prometastatic niches. Clin. Cancer Res. 2016; 22 (24): 5971-82. https://doi.org/10.1158/1078-0432.CCR-16-0460

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Melanoma metastasis in the lungs. Hematoxylin and eosin (×200)

Download (122KB)
3. Fig. 2. Sporadic lymphocytes in liver sinusoids. Hematoxylin and eosin (×400)

Download (119KB)
4. Fig. 3. Immunovisualization of Ki-67-positive cells in melanoma B16-bearing mice (×600)

Download (105KB)
5. Fig. 4. Immunostaining for VEGFA visualization in lungs of melanoma B16-bearing mice without metastasis (A), with metastasis (B) (×400).

Download (32KB)
6. Fig. 5. Immunostaining for SMA-α visualization in the liver of melanoma B16-bearing mice without metastasis (A), with metastasis (B) (×400)

Download (25KB)
7. Fig. 6. Immunostaining for SMA-α visualization in the liver of melanoma B16-bearing mice without metastasis (A), with metastasis (B) (×400)

Download (30KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies