AED peptide activates gene expression and differentiation proteins synthesis of human skin fibroblasts during replicative aging

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Skin fibroblasts aging is caused by genetic features and the environmental factors influence. One of the physiological aspects of skin aging is a decrease of regenerative capacity of dermis fibroblasts, including their ability to differentiate. The aim of this work is to study the effect of the AED peptide on fibroblast differentiation of human skin when aging in vitro. Methods. The study was conducted on DF-1 cell line (human dermal fibroblasts (mesenchymalstem cells)) isolated from the skin of the eyelids of a 37-year-old female donor). Cells were cultured till 25 passages for achieving the replicative aging. The effects of the AED peptide on gene expression and protein synthesis of early (Engrailed 1, PDGFRa) and late (Spry4, Twist2) fibroblast differentiation were assessed by polymerase chain reaction and immunocytochemistry. Results. The expression of the ENGRAILED1, PDGFRA, SPRY4, TWIST2 genes decreased by 1,7; 1.6; 1.5; 4.5 times respectively with aging of dermal fibroblasts. The addition of the AED peptide increased the expression of the ENGRAILED1, PDGFRA, SPRY4, TWIST2 genes in «old» skin fibroblasts by 1,9; 2,1; 2,3; 3,4 times, respectively. Expression of Engrailed 1, PDGFRa, Spry4, Twist2 proteins in fibroblasts decreased by 1,9; 2,3; 5,1; 4,3 times respectively with aging. The AED peptide increased the synthesis of Engrailed 1, PDGFRa, Spry4, Twist2 proteins in «old» fibroblasts by 3.3; 2.0; 2.5; 3.9 times respectively. Conclusion. Thus, the AED peptide increases the functional activity of skin fibroblasts during aging by increasing gene expression and synthesizing differentiation proteins in dermal fibroblast. This geroprotective effect of the AED peptide can accelerate the skin regeneration, stimulate chemotaxis and mitosis of fibroblasts, the synthesis of collagen in them, and activate the remodeling of the extracellular matrix.

Full Text

Restricted Access

About the authors

Ekaterina Olegovna Gutop

Saint Petersburg Institute of Bioregulation and Gerontology

Author for correspondence.
Email: mgutop@mail.ru
MD, PhD, the scientific researcher of the Laboratory of Biogerontology of the Department of Biogerontology Dynamopr., 3, Saint Petersburg, 197110, Russian Federation

Natalia Sergeevna Linkova

Saint Petersburg Institute of Bioregulation and Gerontology; Academy of postgraduate education under FSBU FSCC of FMBA of Russia; Belgorod National Research University

Email: miayy@yandex.ru
doctor of biological sciences, docent, the head of the laboratory of molecular mechanisms of aging; professor of the Department of therapy, geriatrics and antiaging medicine of Academy of postgraduate education under; senior researcher of the Laboratory “Problem of Aging” Dynamopr., 3, Saint Petersburg, 197110, Russian Federation; Volokolamskaya r., 91, Moscow, 125371, Russian Federation; Pobedy str., 85, Belgorod, 308009, Russian Federation

Natalia Vladimirovna Fridman

Saint Petersburg Institute of Bioregulation and Gerontology

Email: natfri@mail.ru
MD, PhD, scientific research of the laboratory of molecular mechanisms of aging Dynamopr., 3, Saint Petersburg, 197110, Russian Federation

Ekaterina Olegovna Kozhevnikova

Saint Petersburg Institute of Bioregulation and Gerontology

Email: katena_94@list.ru
PhD, the scientific researcher of the Laboratory of Biogerontology of the Department of Biogerontology Dynamopr., 3, Saint Petersburg, 197110, Russian Federation

Victoria Olegovna Polyakova

Saint Petersburg Institute of Bioregulation and Gerontology; Saint Petersburg State Pediatric Medical University

Email: vopol@yandex.ru
professor; professor, the head of the laboratory of immunology of agin; the head of the center of molecular medicine Dynamopr., 3, Saint Petersburg, 197110, Russian Federation; Litovskaya str, 2, Saint Petersburg, 194100, Russian Federation

Vladimir Khatskelevich Khavinson

Saint Petersburg Institute of Bioregulation and Gerontology; Pavlov Institute of Physiology Russian Academy of Sciences

Email: khavinson@gerontology.ru
corresponding member of Russian Academy of Science, honored worker of science; doctor of medical sciences, professor, the head; the head of the group of peptide regulation of aging Dynamopr., 3, Saint Petersburg, 197110, Russian Federation; Makarova emb., 6, Saint Petersburg, 199034, Russian Federation

References

  1. Zouboulis C.C., Ganceviciene R., Liakou A.I., Theodoridis A., Elewa R., Makrantonaki E. Aesthetic aspects of skin aging, prevention, and local treatment. Clin. Dermatol. 2019; 37 (4): 365-72. https://doi.org/10.1016/j.clindermatol.2019.04.002.
  2. Woodley D.T. Distinct Fibroblasts in the Papillary and Reticular Dermis: Implications for Wound Healing. Dermatologic clinics. 2017; 35 (1): 95-100. https://doi.org/10.1016/j.det.2016.07.004.
  3. Mascharak S., des Jardins-Park H.E., Davitt M.F., Griffin M., Borrelli M.R., Moore A.L., Chen K., Duoto B., Chinta M., Foster D.S., Shen A.H., Januszyk M., Kwon S.H., Wernig G., Wan D.C., Lorenz H.P., Gurtner G.C., Longaker M.T. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science. 2021; 372 (6540): eaba2374. https://doi.org/10.1126/science.aba2374.
  4. Rinkevich Y., Walmsley G.G., Hu M.S., Maan Z.N., Newman A.M., Drukker M., Januszyk M., Krampitz G.W., Gurtner G.C., Lorenz H.P., Weissman I.L., Longaker M.T. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science. 2015; 348 (6232): aaa2151. https://doi.org/10.1126/science.aaa2151.
  5. Marques L.F., Stessuk T., Camargo I.C., Sabeh Junior N., dos Santos L., Ribeiro-Paes J.T. Plateletrich plasma (PRP): methodological aspects and clinical applications. Platelets. 2015; 26 (2): 101-13. https://doi.org/10.3109/09537104.2014.881991.
  6. Шурыгина И.А., Шурыгин М.Г., Зеленин Н.В., Аюшинова Н.И. Воздействие на митогенактивируемые протеинкиназы как новое направление регуляции роста соединительной ткани. Бюллетень сибирской медицины. 2017; 16 (4): 86-93. https://doi.org/10.20538/1682-0363-2017-4-86-93
  7. Lee M.S., Lowe G., Flanagan S., Kuchler K., Glackin C.A. Human Dermo-1 has attributes similar to Twist in early bone development. Bone. 2000; 27: 591-602. https://doi.org/10.1016/s8756-3282(00)00380-x.
  8. Lai W.T., Krishnappa V, Phinney D.G. Fibroblast growth factor 2 (Fgf2) inhibits differentiation of mesenchymal stem cells by inducing Twist2 and Spry4, blocking extracellular regulated kinase activation, and altering Fgf receptor expression levels. Stem Cells. 2011; 29 (7): 1102-11. https://doi.org/10.1002/stem.661.
  9. Crespo N.E., Torres-Bracero A., Renta J.Y., Desnick R.J., Cadilla C.L. Expression profiling identifies twist2 target genes in setleis syndrome patient fibroblast and lymphoblast cells.Int. J. Environ Res. Public Health. 2021; 18 (4): 1997. https://doi.org/10.3390/ijerph18041997.
  10. Hoffknecht B.C., Worm D.J., Bobersky S., Prochnow P., Bandow J.E., Metzler-Nolte N. Influence of the Multivalency of Ultrashort Arg-Trp-Based Antimicrobial Peptides (AMP) on Their Antibacterial Activity Chem. Med. Chem. 2015; 10 (9): 1564-9. doi: 10.1002/cmdc.201500220.
  11. Ni M., Tresset G., Iliescu C., Hauser C.A.E. Ultrashort Peptide Theranostic Nanoparticles by Microfluidic-Assisted Rapid Solvent Exchange. IEEE Trans Nanobioscience. 2020; 19 (4): 627-32. https://doi.org/10.1109/TNB.2020.3007103.
  12. Фридман Н.В., Линькова Н.С., Бойко Л.В., Кахели М.А. Влияние пептидных биорегуляторов на структурнофункциональные особенности кожи лица женщин пожилого возраста. Молекулярная медицина. 2021; 4: 42-6. https://doi.org/10.29296/24999490-2021-04-07.
  13. Журкович И.К., Ковров Н.Г, Рыжак Г.А., Миронова Е.С., Хавинсон В.Х. Идентификация коротких пептидов в составе полипептидных комплексов, выделенных из органов животных. Успехи современной биологии. 2020; (2): 140-8. https://doi.org/10.31857/S004213242002012X
  14. Линькова Н.С., Дробинцева А.О., Орлова О.А., Кузнецова Е.П., Полякова В.О., Кветной И.М., Хавинсон В.Х. Пептидная регуляция функций фибробластов кожи при их старении in vitro. Клеточные технологии в биологии и медицине. 2016; 161 (1): 40-4. https://doi.org/10.1007/s10517-016-3370-x.
  15. Фридман Н.В., Линькова Н.С., Кожевникова Е.О., Гутоп Е.О., Хавинсон В.Х. Сравнительное влияние пептидов KE и AED на функциональную активность фибробластов кожи человека при их репликативном старении. Клеточные технологии в биологии и медицине. 2020; 3: 197-201. https://doi.org/10.1007/s10517-020-05022-1.
  16. Хавинсон В.Х., Линькова Н.С., Дятлова А.С., Гутоп Е.О., Орлова О.А. Короткие пептиды: регуляция функций кожи при старении. Успехи геронтологии. 2020; 33(1): 46-54.
  17. Ashapkin V, Khavinson V., Shilovsky G., Linkova N., Vanuyshin B. Gene expression in human mesenchymal stem cell aging cultures: modulation by short peptides. Molecular Biology Reports. 2020; 47: 4323-9. https://doi.org/10.1007/s11033-020-05506-3.
  18. Khavinson V, Linkova N., Diatlova A., Trofimova S. Peptide Regulation of Cell Differentiation. Stem Cell Reviews and Reports. 2020; 16: 118-25. https://doi.org/10.1007/s12015-019-09938-8.
  19. Хохлов А.Н., Клебанов А.А., Кармушаков А.Ф., Шиловский Г.А., Насонов М.М., Моргунова Г.В. Тестирование геропротекторов в экспериментах на клеточных культурах: выбор оптимальной модельной системы. Вестник Московского университета. Серия 16: биология. 2014; 1: 13-8.
  20. Орасмяэ-Медер Т., Эрнандес Е. Пептидные технологии в косметике: тенденции и перспективы. Косметика & медицина. 2010; 2: 46-53.
  21. Kolchina N., Khavinson V., Linkova N., Yakimov A., Baitin D., Afanasyeva A., Petukhov M. Systematic search for structural motifs of peptide binding to double-stranded DNA. Nucleic Acids Research. 2019; 47 (20): 10553-63. https://doi.org/10.1093/nar/gkz850.
  22. Hsu Y.C., Wu Y.T., Tsai C.L., Wei Y.H. Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells. Exp. Biol. Med. (Maywood). 2018; 243 (6): 563-75. https://doi.org/10.1177/1535370218759636.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Twist2 expression in the cytoplasm of skin fibroblasts during replicative aging. Immunofluorescent microscopy, ×200. Twist2 expression – red fluorescence, Alexa Fluor 567. Nucleus marked by Hoechst 33258, blue fluorescence. А – control, «young» culture; B – control «old» culture; C – AED peptide, «old» culture

Download (42KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies