Decrease in ANG and VEGF mRNA levels during progressive angiogenesis of the liver venous system of Wistar rats in experimental cirrhosis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Currently, understanding the molecular mechanisms of pathological angiogenesis remains a fundamental problem in hepatology. The aim of this work was to find a relationship between the level of mRNA expression of the ang, vegf genes and angiogenesis in the liver of Wistar rats in experimental cirrhosis. Methods. The experiment used 117 sexually mature male Wistar rats weighing from 190-210g. Liver cirrhosis in animals was induced with a solution of thioacetamide, which was introduced into the stomach using a probe at a dose of 200 mg/kg of animal body weight 2 times a week. The dynamics of the process was studied at nine time points (over 17 weeks). The level of mRNA expression of the ang and vegf genes in the liver was studied by real-time polymerase chain reaction. To obtain overview histological preparations, liver sections were stained with hematoxylin and eosin, and to identify connective tissue - by the Mallory method. Microscopic analysis was performed using an OLYMPUS BX51 microscope and ImageScope Color and cellSens Standard image analysis programs. The degree offlbrosis was assessed using the Ishak K.G. Conclusion. A statistically significant relationship was established between the level of expression of the total mRNA of target genes, angiogenesis of the venous system, and fibrogenesis. No pronounced morphological changes were observed on the part of the liver arterial system throughout the experiment; arterial angiogenesis was not identified. Probably, the spliced forms of mRNA of the ang and vegf genes estimated by us are more important factors in the pathological angiogenesis of the venous system. Significant correlations were found between target genes r=0.65-0.84 (splice variants that were investigated). The joint study of genes with respect to each other is a necessary additional parameter when conducting basic and preclinical research.

Full Text

Restricted Access

About the authors

Elena Ivanovna Lebedeva

Vitebsk State Order of Peoples’ Friendship Medical University

Author for correspondence.
Email: lebedeva.ya-elenale2013@yandex.ru
Associate Professor of the Department of Histology, Cytology and Embryology; Associate Professor, PhD Frunze Ave., 27, Vitebsk, 210009, Republic of Belarus

Anatoly Tadeushevich Shchastny

Vitebsk State Order of Peoples’ Friendship Medical University

Email: admin@vsmu.by
rector, Head of the Chair of Hospital Surgery with the course of the Faculty for Advanced Training & Retraining; Doctor of Medical Sciences, professor. Frunze Ave., 27, Vitebsk, 210009, Republic of Belarus

Andrey Sergeevich Babenko

Belarussian State Medical University

Email: labmdbt@gmail.com
Associate Professor of the Department of Bioorganic chemistry; PhD. Dzerzhinsky ave., 83, building 15, Minsk, 220116, Republic of Belarus

References

  1. Lafoz E., Ruart M., Anton A., Oncins A., Hernanadez-Gea V. The endothelium as a driver of liver fibrosis and regeneration. Cells. 2020; 9 (4): 929. https://doi.org/10.3390/cells9040929.
  2. Yang X., Wang Z., Kai J., Wang F., Jia Y., Wang S., Tan S., Shen X., Chen A., Shao J., Zhang F., Zhang Z., Zheng S. Curcumol attenuates liver sinusoidal endothelial cell angiogenesis via regulating Glis-PROX1-HIF-1a in liver fibrosis. Cell Prolif. 2020; 53 (3): 12762. https://doi.org/10.1111/cpr.12762.
  3. He Z., Yang D., Fan X., Zhang M., Li Y, Gu X., Yang M. The roles and mechanisms of lncrnas in liver fibrosis.Int. J. Mol. Sci. 2020; 21 (4): 1482. https://doi.org/10.3390/ijms21041482.
  4. Roehlen N., Crouchet E., Baumert T.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells. 2020; 9 (4): 875. https://doi.org/10.3390/cells9040875.
  5. Fenrandez M., Semela D., Bruix J., Colle I., Pinzani M., Bosch J. Angiogenesis in liver disease. J. Hepatol. 2009; 50 (3): 604-20. https://doi.org/10.10Wj.jhep.2008.12.011.
  6. Coulon S., Heindryckx F, Geerts A., Van Steenkiste C., Colle I., Van Vlierberghe H. Angiogenesis in chronic liver disease and its complications. Liver Int. 2011; 31 (2): 146-62. https://doi.org/10.111Vj.1478-3231.2010.02369.x.
  7. Carmeliet P., Jain R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011; 473 (7347): 298-307. https://doi.org/10.1038/nature10144.
  8. Elpek G.O. Angiogenesis and liver fibrosis. World J. Hepatol. 2015; 7 (3): 377-91. https://doi.org/10.4254/wjh.v7.i3.377.
  9. Bocca C., Novo E., Miglietta A., Parola M. Angiogenesis and fibrogenesis in chronic liver diseases. Cell. Mol. Gastroenterol. Hepatol. 2015; 1 (5): 477-88. https://doi.org/10.1016/j.jcmgh.2015.06.011.
  10. Ding Q., Tian X.G., Li Y, Wang Q.Z., Zhang C.Q. Carvedilol may attenuate liver cirrhosis by inhibiting angiogenesis through the VEGF-Src-ERK signaling pathway. World J. Gastroenterol. 2015; 21 (32): 9566-76. https://doi.org/10.3748/wjg.v21.i32.9566.
  11. Yang L., Kwon J., Popov Y, Gajdos G.B., Ordog T., Brekken R.A., Mukhopadhyay D., Schuppan D., Bi Y, Simonetto D., Shah VH. Vascular endothelial growth factor promotes fibrosis resolution and repair in mice. Gastroenterology. 2014; 146 (5): 1339-50. e1. https://doi.org/10.1053/j.gastro.2014.01.061.
  12. Lee J.S., Semela D., Iredale J., Shah V.H. Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte? Hepatology. 2007; 45 (3): 817-25. https://doi.org/10.1002/hep.21564.
  13. Ni Y, Li J.M., Liu M.K., Zhang T.T., Wang D.P., Zhou W.H., Hu L.Z., Lv W.L. Pathological process of liver sinusoidal endothelial cells in liver diseases. World J. Gastroenterol. 2017; 23 (43): 7666-77. https://doi.org/10.3748/wjg.v23.i43.7666.
  14. Garbuzenko D.V, Arefyev N.O., Kazachkov E.L. Antiangiogenic therapy for portal hypertension in liver cirrhosis: Current progress and perspectives. World J. Gastroenterol. 2018; 24 (33): 3738-48. https://doi.org/10.3748/wjg.v24.i33.3738.
  15. Guerrier M., Attili F., Alpini G., Glaser S. Prolonged administration of secretin to normal rats increases biliary proliferation and secretin-induced ductal secretory activity. Hepatobiliary Surg. Nutr. 2014; 3 (3): 118-25. https://doi.org/10.3978/j1ssn.23043881.2014.04.04.
  16. Everhart J.E., Wright E.C., Goodman Z.D., Dienstag J.L., Hoefs J.C., Kleiner D.E., Ghany M.G., Mills A.S., Nash S.R., Govindarajan S., Rogers T.E., Greenson J.K., Brunt E.M., Bonkovsky H. L., Morishima C. Prognostic value of Ishak fibrosis stage: findings from the hepatitis C antiviral long-term treatment against cirrhosis trial. Hepatology. 2010; 51 (2): 585-94. https://doi.org/10.1002/hep.23315.
  17. Amano H., Mastui Y., Ito Y., Shibata Y, Betto T., Eshima K., Ogawa F., Satoh Y, Shibuya M., Majima M. The role of vascular endothelial growth factor receptor 1 tyrosine kinase signaling in bleomycin-induced pulmonary fibrosis. Biomed. Pharmacother, 2019; 117: 109067. https://doi.org/10.10Wj.biopha.2019.109067.
  18. Salum G.M., El Din N.G.B., Ibrahim M.K., Anany M.A., Dawood R.M., Khairy A., El Awady M.K. Vascular endothelial growth factor expression in hepatitis C virus-induced liver fibrosis: A potential biomarker, J.Interferon Cytokine Res. 2017; 37 (7): 310-6. https://doi.org/10.1089/jir.2016.0127.
  19. Barratt S.L., Flower V.A., Pauling J.D., Millar A.B. VEGF (Vascular Endothelial Growth Factor) and fibrotic lung disease.Int. J. Mol. Sci. 2018; 19 (5): 1269. https://doi.org/10.3390/ijms19051269.
  20. Щастный А.Т, Лебедева Е.И., Бабенко А.С. Роль уровня мРНК генов сигнального пути Notch при индуцированном фиброгенезе печени крысы. Вестник ВГМУ 2021; 20 (2): 25-37. https://doi.org/10.22263/2312-4156.2021.2.25

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. All splice variants of ang mRNA level changes. * – normalized mRNA expression (ang); reference gene – Hes1; reference control point – m0

Download (29KB)
3. Fig. 2. All splice variants of vegf mRNA level changes. * – normalized mRNA expression (vegf); reference gene – Hes1; reference control point – m0

Download (29KB)
4. Fig. 3. Induced cirrhosis of rat liver, 11 weeks after the start of the experiment. Angiogenesis is marked with arrows. Stained with hematoxylin and eosin; ×20

Download (253KB)
5. Fig. 4. Induced cirrhosis of rat liver, 14 weeks after the start of the experiment. Pronounced angiogenesis is marked with oval frames. Mallory staining; ×10

Download (263KB)
6. Fig. 5. Induced cirrhosis of rat liver, 17 weeks after the start of the experiment. Mallory staining; ×10

Download (271KB)
7. Fig. 6. Changes in areas of interlobular veins and areas of connective tissue. Plot of the two-way analysis of variance parameter

Download (44KB)
8. Fig. 7. Changes in vegf and ang mRNA levels. Plot of the two-way analysis of variance parameter

Download (42KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies