Eosinophils are predictors of susceptibility to thrombosis and severe course of Covid-19 in various types of therapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The creation by COVID-19 of methods for prophylactic of these complications as blood hypercoagulation, leading to thrombosis and polyorganic insufficiency, is an urgent task of modern biology and medicine. The aim of the study was to develop the simple methods, by which it is possible make prognosis of the changes in the blood coagulation peculiarities by this illness and by different methods of treatment. Methods. The patients with severe COVID-19 were separated to 3 groups. 1- control (basic scheme of treatment), 2- (basic scheme of treatment and Tocilizumab), 3- (basic scheme of treatment and Thymalin). Evaluation of the dynamic of eosinophil and thrombocytes number was performed using hemoanalyzer PENTRA-80 Horiba ABX Diagnostics. The detection of basic index of coagulogramm was performed using the coagulometer Sysmex. The connection of eosinophil number to the changes of the basic rate of coagulogramm. Results. It was established, that eosinophils are the are the predictors of change both of coagulation and of thromb formation in the blood. The positive effect of Thymalin, as compared to Tocilizumab, on the blood coagulation system by sever COVID-19 is established. Conclusion. It is established that by immunocorector using by sever COVID-19 Thymalin is mostly effective for treatment and prophylactic of complications.

Full Text

Restricted Access

About the authors

Boris Ilich Kuznik

Chita State Medical Academy

Email: bi_kuznik@mail.ru

chief of cathedra of normal physiology

Russian Federation,

Yurii Nikolaevich Smolyakov

Chita State Medical Academy

Email: smolyakov@rambler.ru

chief of cathedra of medical physic and informatics

Russian Federation,

Konstantin Gennadyevich Shapovalov

Chita State Medical Academy

Email: shkg26@mail.ru

chief of cathedra of anestesiology, reanimation and intensive therapy

Russian Federation,

Ludmila Sergeevna Kazantseva

GUZRegional Clinical Infectious Diseases Hospital

Email: mila-kaz.antseva93@mail.ru

chief of hospital unit of reanimation and intensive therapy

Russian Federation,

Natalia Iosifovna Chalisova

ANO SIC «St. Petersburg Institute of Bioregulation and Gerontology»; Pavlov Institute of Physiology of the Russian Academy of Sciences

Author for correspondence.
Email: ni_chalisova@mail.ru

leading researcher; Senior researcher of the laboratory of Oncogerontology of Biogerontology department

Russian Federation,

References

  1. Magro C., Mulvey J.J., Berlin D. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Ransl. Res. 2020; 20: 1931-5244. doi: 10.1016/j.trsl.2020.04.007.
  2. Beristain-Covarrubias N., Perez-Toledo M., Thomas M.R. Understanding infection-induced thrombosis: lessons learned from animal models. Front. Immunol. 2019; 10: 2569. doi: 10.3389/fimmu.2019.02569.
  3. Henry B.M., Vikse J., Benoit S. Hyperinflammation and derangement of renin-angi-otensin-aldosterone system in COVID-19: a novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin. Chim. Acta. 2020; 507: 167-73. doi: 10.1016/j.cca.2020.04.027
  4. Кузник Б.И., Хавинсон В.Х., Линькова Н.С. COVID-19: влияние на иммунитет, систему гемостаза и возможные пути коррекции. Успехи физиологических наук. 2020; 51 (4): 51-63. doi: 10.31857/S0301179820040037.
  5. Кузник Б.И., Хавинсон В.Х., Смирнов В.С. Особенности патогенеза и течения COVID-19 у лиц пожилого и старческого возраста. Успехи геронтологии. 2020; 6: 1032-42. doi: 10.34922/AE.2020.33.6.003.
  6. Слуханчук Е.В., Бицадзе В.О., Хизроева Ю.К., Третьякова М.В., Шкода А.С., Артюков О.П.,Цибизова B.И., Мищенко А.Л., Григорьева К.Н., Грис Ж., Элаламы Е., Макацария А.Д. COVID-19 и тромботическая микроангиопатия. Акушерство, гинекология и репродукция. 2021; 15 (6): 639-57.
  7. Симарова И.Б., Переходов С. Н., Буланов А.Ю. Геморрагические осложнения новой коронавирусной инфекции: актуальная клиническая проблема. Тромбоз, гемостаз и реология. 2021; 3: 12-5.
  8. Ройтман Е., Маркин C., Кравцов П., Мазайшвили К. Изменение отношения врачей к антикоагулянтной терапии при новой коронавирусной инфекции в 2021 году. Тромбоз, гемостаз и реология. 2021; 4: 51-6.
  9. Кузник Б.И., Хавинсон В.Х., Лукьянов C.А., Шаповалов К.Г., Смоляков Ю.Н., Терешков П.П., Шаповалов Ю.К., Коннов В.А., Зайцев Д.Н., Маген Э. Влияние тоцилизумаба и тималина на системное воспаление у больных COVID-19. Врач. 2020; 31 (11): 87-96. doi: 10.29296/25877305-2020-11-17.
  10. Otifi H.M., Adiga B.K. Endothelial Dysfunction in Covid-19. Am. J. Med. Sci. 2022; 63 (4): 281-7. doi: 10.1016/j.am-jms.2021.12.010.
  11. Seitz A., Ong P. Endothelial dysfunction in COVID-19: A potential predictor of long-COVID? Int. J. Cardiol. 2022; 349: 155-6. doi: 10.1016/j.ijcard.2021.11.051.
  12. Sbirkov Y., Dzharov V., Todorova K., Hayrabedyan S., Sarafian V. Endothelial inflammation and dysfunction in COVID-19. Vasa. 2022; 51 (2): 62-70. doi: 10.1024/0301-1526/a000991.
  13. Ribes A., Vardon-Bounes F., Memier V., Poette M., Au-Duong J., Garcia C., Minville V., Sie P., Bura-Riviere A., Voisin S., Payrastre B. Thromboembolic events and Covid-19. Adv. Biol. Regul. 2020; 77: 100735. doi: 10.1016/j.jbior.2020.100735.
  14. Shapovalov Konstantin G., Kuznik Boris I., Lukyanov Sergey A., Khavinson Vladimir K., Smolyakov Yuri N., Tereshkov Pavel K., Shapovalov Yuri K., Konnov Valery A., Magen Eli. Immunomodulation with Thymalin in the COVID-19 Related Cytokine Storm: Case Reports. 2020; 10 (6): 71-8. doi: 10.34297/AJBSR. 2020.10.001574
  15. Khavinson VKh., Kuznik B.I., Trofimova S.V., Volchkov V.A., Rukavishnikova S.A., Titova O.N., Akhmedov T.A., Trofimov A.V., Potemkin V.V., Magen E. Accepted: Results and Prospects of Using Activator of Hematopoietic Stem Cell Differentiation in Complex Therapy for Patients with COVID-19. Stem Cell Reviews and Reports. 2020; 17 (1): 285-90 doi: 10.1007/s12015- 020-10087-6.
  16. Kakodkar P., Kaka N., Baig M.N. A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19). Cureus. 2020; 12 (4): e7560. doi: 10.7759/cureus.7560.
  17. Khavinson V., Linkova N., Dyatlova A., Kuznik B., Umnov R. Peptides: prospects for use in the treatment of COViD-19. J. Molecules. Special Issue «Peptide Therapeutics 2.0». 2020; 25 (10): 4389-92. doi: 10.3390/molecules25194389.
  18. Kuznik B.I., Smolyakov Yu.N., Shapovalov Yu.K., Shapovalov K.G., Lukyanov S.A., Parts D.S. The State of Microcirculatory Hemodynamics in Patients with Moderate and Severe COVID-19. Bulletin of Experimental Biology and Medicine. 2021; 171: 453-7. doi: 10.1007/s10517- 021-05248-7.
  19. Хавинсон В.Х., Кузник Б.И., Рукавишникова С.А., Линькова Н.С., Ахмедов Т.А. Влияние тималина на показатели клеточного, гуморального иммунитета и качество жизни у пациентов пожилого возраста с COVID-19. Врач. 2021; 6: 51-4. https://doi.org/10.29296/25877305-2021-06-09.
  20. Thymalin effect on the index of cellular, humoral immunity and life quality in the aged patients. Doctor. 2021; 6: 51-4. doi: 10.29296/25877305-2021-06-09.
  21. Joly B.S., Siguret V, Veyradier A. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19.Intensive Care Med. 2020; 6: 1-4. doi: 10.1007/s00134-020-06088-1
  22. Barnes B.J., Adrover J.M., Baxter-Stoltzfus A. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J. Exp. Med. 2020; 217 (6): e20200652. doi: 10.1084/jem.20200652.
  23. Zuo Y., Yalavarthi S., Shi H., Kelsey Gockman, Melanie Zuo, Jacqueline A Madison, Christopher Blair, Andrew Weber, Betsy J. Barnes, Mikala Egeblad Robert J. Woods, Yogendra Kanthi, Jason S. Knight. Neutrophil extracellular traps in COVID-19 JCI Insight. 2020; 5 (11): e138999. doi: 10.1172/jci.insight.138999.
  24. Mertoglu C., Huyut M.T., Olmez H., Tosun M., Kantarci M., Coban T.A. COVID-19 is more dangerous for older people and its severity is increasing: a case-control study Med Gas Res. 2022; 12 (2): 51-4. doi: 10.4103/2045-9912.325992.
  25. Flaumenhaft R., Enjyoji K., Schmaier A.A. Vasculopathy in COVID-19. Blood. 2021; 3: 012250. doi: 10.1182/blood.2021012250.
  26. Zhang C., Wu Z., Li J.W., Zhao H., Wang G.Q. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) ntagonist Tocilizumab may be the key to reduce the mortality. Int. J. Antimicrob. Agents, 2020; 28: 105954.
  27. Hermine O., Mariette X., Tharaux P.L., Resche-Rigon M., Porcher R., Ravaud P. Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia: A Randomized Clinical Trial. CORIMUNO-19 Collaborative Group. JAMA Intern Med. 2021; 181 (1): 32-40. DOI: 0.1001/jamain-ternmed.2020.6820.
  28. RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021; 397 (10285): 1637-45. doi: 10.1016/S0140-6736(21)00676-0.
  29. Jamilloux Yvan, Thomas Henry, Alexandre Belot, Sebastien Viel, Maxime Fauter, Thomas El Jammal, Thierry Walzer, Bruno Franjois, Pascal SeveShould we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions Autoimmun Rev 2020; 4: 102567. doi: 10.1016/j.autrev.2020.102567
  30. Морозов В.Г., Хавинсон В.Х. Новый класс биологических регуляторов многоклеточных систем - цитомедины. Успехи соврем. биол. 1983; 96 (6): 339-52.
  31. Морозов В.Г., Хавинсон В.Х. Иммунологические функции тимуса. Успехи соврем. биол. 1984; 97 (1): 36-49.
  32. Khavinson VKh. Peptides and Ageing. Neuroendocrynology. Letters. 2002; 23: 3-144.
  33. Liao D., Zhou F., Luo L., Xu M., Wang H., Xia J., Gao Y., Cai L., Wang Z., Yin P., Wang Y., Tang L., Deng J., Mei H., Hu Y. Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study Lancet Haematol. 2020; 7 (9): e671-e678. doi: 10.1016/S2352-3026(20)30217-9
  34. Habernau Mena A., Garcia-Moguel I., Vazquez de la Torre Gaspar M., Mugica V., Alvarado Izquierdo M.I., Jimenez Blanco M.A., Gandolfo-Cano M., Jimenez Lara M., Gonzalez Moreno A., Saura Foix P., Navarro-Pulido A., Martin-Arriscado Arroba C., Delgado Romero J., Dominguez-Ortega J. COVID-19. Course in Allergic Asthma Patients: A Spanish Cohort Analysis Asthma Committee of SOCIEDAD ESPANOLA DE ALERGOLOGIA E. INMUNOLOGIA CLINICA (SEAIC).J. Asthma Allergy 2022; 22 (15): 257-64. doi: 10.2147/JAA.S344934.
  35. Zein J.G., Strauss R., Attaway A.H., Hu B., Milinovich A., Jawhari N., Chamat S.S., Ortega V.E. Eosinophilia Is Associated with Improved COVID-19 Outcomes in Inhaled Corticosteroid-Treated Patients. J. Allergy Clin. Immunol. Pract. 2022; 10 (3): 742-50. e14. doi: 10.1016/j.jaip.2021.12.034. Epub 2022 Jan 13.
  36. Outh R., Boutin C., Gueudet P., Suzuki M., Saada M., Aumaitre H. Eosinopenia №100/muL as a marker of active COVID-19: an observational prospective study. J. Microbiol Immunol. Infect. 2021; 54: 61-8.
  37. Coden M.E., Berdnikovs S.J. Eosinophils in wound healing and epithelial remodeling: Is coagulation a missing link? Leukoc. Biol. 2020; 108 (1): 93-103. doi: 10.1002/JLB.3MR0120-390R.
  38. DeLong E.R., DeLong D.M., Clarke-Pearson D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics. 1988; 44 (3): 837-45. doi: 10.2307/2531595
  39. Vitkovsky Yu. Interleukins modulate procoagulant, anticoagulant and fibrinolytic properties of lymphocytes. Thrombosis and Haemostasis. Suppl. Abstracts of XVIth Congress of the International Society on Thrombosis and Haemostasis. Florence, Italy 1997: 111-2.
  40. Porto L.C., Costa C.H., Nunes A.S., Bouzas I., Ferreira T.F., Porto V.M., Secco D.A., Vilas Boas S., Faria A.C., Rufino R. Clinical and laboratory characteristics in outpatient diagnosis of COVID-19 in healthcare professionals in Rio de Janeiro, Brazil. J. Clin. Pathol. 2022; 75 (3): 185-92. doi: 10.1136/jclinpath-2020-206797.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. ROC evaluation of coagulogramm and eosinophils by using of treatment traditional schema

Download (124KB)
3. Fig. 2. ROC evaluation of coagulogramm and eosinophils by using of Tocilizumab

Download (126KB)
4. Fig. 3. ROC evaluation of coagulogramm and eosinophils by using of Tymalin

Download (125KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies