The level of immune checkpoint co-inhibitors in tumor tissue in patients with colon tumor

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. A high level of checkpoint co-inhibitors in the tumor microenvironment plays an important role in inhibiting the local immune response, which contributes to the growth and progression of cancer.

The aim of the study. We aimed to determine immune checkpoint co-inhibitors level (CTLA-4, TIM-3, LAG-3, PD-1) and their ligands (B7-2, Galectin-9, PD-L1) in tumor tissue in patients with benign tumor of the colon and cancer.

Methods: the study enrolled 94 patients divided into 3 groups: 44 patients with colorectal cancer, 25 with a benign colon tumor, 25 – a control group (patients who underwent plastic surgery of a colostomy formed earlier due to a colon injury). The level of immune checkpoint co-inhibitors and their ligands was studied in tumor tissue by flow cytofluometry on a CytoFlex LX analyzer (Beckman Coulter, USA) using the LEGENDplex ™ HU multiplex analysis kit (Immune Checkpoint, USA)

Results: we found that in patients with colon cancer the level of immune checkpoint co-inhibitors (TIM-3, CTLA-4, LAG-3) in the homogenate supernatant of the tumor tissue was higher than in the control group. The level of TIM-3 protein increased by 43.6 times (p<0.001), CTLA-4 – by 2.3 times (p=0.007), LAG-3 – by 5.1 times (p<0.001). Patients with colorectal cancer also showed the elevation of the concentration of TIM-3 protein by 11.4 times (p<0.001), LAG-3 by 1.8 times (p=0.008), CTLA-4 protein by 1.5 times (p=0.02) compared to patients with benign colon tumor. In patients with colorectal cancer, the level of the TIM-3 ligand (Galectin-9) exceeded the indicator of the control group by 56.7 times (p<0.001), and the CTLA-4 ligand (B7-2) – by 1.7 times (p=0.004). In addition, the concentration of Galectin-9 in patients with CRC was 3.4 times higher (p<0.001), the B7-2 ligand was 1.5 times higher (p=0.04). compared to patients with benign colon tumor.

Conclusion: an increase in the level of CTLA-4, TIM-3, LAG-3 and their ligands – B7-2 and Galectin-9 in tumor tissue indicates the involvement of these molecules in the cancer genesis of colorectal cancer.

Full Text

Restricted Access

About the authors

Andrey V. Chetveryakov

FSBI HE “Chita State Medical Academy” of Ministry of Health

Author for correspondence.
Email: yasnogorsk94@gmail.com
ORCID iD: 0000-0002-8472-107X

postgraduate, Department of Hospital Surgery, FSBI HE “Chita State Medical Academy” of Ministry of Health

Russian Federation, Gorky str., 39a, Chita, 672000

Viktor L. Tsepelev

FSBI HE “Chita State Medical Academy” of Ministry of Health

Email: viktorcepelev@mail.ru
ORCID iD: 0000-0002-2166-5154

Head of the Department of Hospital Surgery, FSBI HE “Chita State Medical Academy” of Ministry of Health

Russian Federation, Gorky str., 39a, Chita, 672000

References

  1. Grisaru-Tal S. Eosinophil–lymphocyte interactions in the tumor microenvironment and cancer immunotherapy. Nature Immunology. 2022; 23 (9): 1309–16. DOI: https://doi.org/10.1038/s41590-022-01291-2
  2. Zhang H., Chen J. Current status and future directions of cancer immunotherapy. J. of cancer. 2018; 9 (10): 1773. DOI: https://doi.org/10.7150/jca.24577
  3. Reticker-Flynn N. E. Lymph node colonization induces tumor-immune tolerance to promote distant metastasis. Cell. 2022; 185 (11): 1924–42. DOI: https://doi.org/10.1016/j.cell.2022.04.019
  4. Ghorbaninezhad F., Masoumi J., Bakhshivand M., Baghbanzadeh A., Mokhtarzadeh A., Kazemi T., Aghebati-Maleki L., Shotorbani S.S., Jafarlou M., Brunetti O., Santarpia M., Baradaran B., Silvestris N. CTLA-4 silencing in dendritic cells loaded with colorectal cancer cell lysate improves autologous T-cell responses in vitro. Front Immunol. 2022; 1 (13): 931316. DOI: https://doi.org/10.3389/fimmu.2022.931316
  5. Li X., Zhou X., Liu J., Zhang J., Feng Y., Wang F. Liposomal Co-delivery of PD-L1 siRNA/Anemoside B4 for Enhanced Combinational Immunotherapeutic Effect. ACS Applied Materials & Interfaces. 2022; 14 (25): 28439–54. DOI: https://doi.org/10.1021/acsami.2c01123
  6. Li X., Zhou X., Liu J., Zhang J., Feng Y., Wang F. Liposomal Co-delivery of PD-L1 siRNA/Anemoside B4 for Enhanced Combinational Immunotherapeutic Effect. ACS Applied Materials & Interfaces. 2022; 14 (25): 28439–54. DOI: https://doi.org/10.1021/acsami.2c01123
  7. Joller N., Kuchroo K. Tim-3, Lag-3, and TIGIT. Curr Top Microbiol Immunol. 2017; 410: 127–56. DOI: https://doi.org/10.1007/82.2017.62
  8. Liao X.A. Review of emerging biomarkers for immune checkpoint inhibitors in tumors of the gastrointestinal tract. Medical Science Monitor: International Medical J. of Experimental and Clinical Research. 2022; 28: e935348. DOI: https://doi.org/10.12659/MSM.935348
  9. Sasidharan Nair V., El Salhat H., Taha R.Z. DNA methylation and repressive H3K9 and H3K27 trimethylation in the promoter regions of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, and PD-L1 genes in human primary breast cancer. Clin Epigenet. 2018; 10 (11): 13148–52. DOI: https://doi.org/10.1186/s13148-018-0512-1
  10. Chen F. Immunohistochemistry analyses of LAG-3 expression across different tumor types and co-expression with PD-1. J. Clin. Oncol. 2020; 38 (15): е15086. doi: 10.1200/JCO.2020.38.15_suppl.e15086
  11. Cheng G., Li M. Expression of Tim-3 in gastric cancer tissue and its relationship with prognosis. Int J. Clin. Exp. Pathol. 2015; 8 (8): 9452–7.
  12. Guo X.J., Lu J.C., Zeng H.Y., Zhou R., Sun Q.M., Yang G.H., Pei Y.Z., Meng X.L., Shen Y.H., Zhang P.F., Cai J.B., Huang P.X., Ke A.W., Shi Y.H., Zhou J., Fan J., Chen Y., Yang L.X., Shi G.M., Huang X.Y. CTLA-4 Synergizes with PD1/PD-L1 in the Inhibitory Tumor Microenvironment of Intrahepatic Cholangiocarcinoma. Front Immunol. 2021; 12: 705378. DOI: https://doi.org/10.3389/fimmu.2021.705378
  13. Мудров В.А. Алгоритмы статистического анализа количественных признаков в биомедицинских исследованиях с помощью пакета программ SPSS. Забайкальский медицинский вестник. 2020; 1: 140–50. [Mudrov VA. Statistical analysis algorithms of quantitative features in biomedical research using the SPSS software package. Zabajkal’skij medicinskij vestnik. 2020; 1: 140–50 (In Russian)]
  14. Lang T.A., Altman D.G. Basic statistical reporting for articles published in biomedical journals: the “Statistical analyses and methods in the published literature” or the SAMPL guidelines. Int J. Nurs Stud. 2015; 52 (1): 5–9. DOI: https://doi.org/10.1016/j.ijnurstu.2014.09.006
  15. Wen, Y., Tang, F., Tu, C., Hornicek, F., Duan, Z., & Min, L. Immune checkpoints in osteosarcoma: Recent advances and therapeutic potential. Cancer Letters. 2022; 5 (8): 215887. DOI: https://doi.org/10.1016/j.canlet.2022.215887
  16. Bode H.F., Heikkinen A., Lundgren S., Kaprio J. Differences in DNA Methylation-Based Age Prediction Within Twin Pairs Discordant for Cancer. Twin Research and Human Genetics. 2022; 1 (4): 1–9. DOI: https://doi.org/10.1016/j.semcancer.2020.08.009
  17. Bagbudar S., Karanlik H., Cabioglu N., Bayram A., Ibis K., Aydin E., Yavuz E., Onder S. Prognostic Implications of Immune Infiltrates in the Breast Cancer Microenvironment: The Role of Expressions of CTLA-4, PD-1, and LAG-3. Applied Immunohistochemistry & Molecular Morphology. 2022; 30 (2): 99–107.
  18. Guo X.J., Lu J.C., Zeng H.Y., Zhou R., Sun Q.M., Yang G.H., Pei Y.Z., Meng X.L., Shen Y.H., Zhang P.F., Cai J.B., Huang P.X., Ke A.W., Shi Y.H., Zhou J., Fan J., Chen Y., Yang L.X., Shi G.M., Huang X.Y. CTLA-4 Synergizes with PD1/PD-L1 in the Inhibitory Tumor Microenvironment of Intrahepatic Cholangiocarcinoma. Front Immunol. 2021; 12: 705378. DOI: https://doi.org/10.3389/fimmu.2021.705378.
  19. Baleeiro R.B., Bouwens C.J., Liu P., Di Gioia C., Dunmall L.S. MHC class II molecules on pancreatic cancer cells indicate a potential for neo-antigen-based immunotherapy. OncoImmunology. 2022; 11 (1): 2080329. DOI: https://doi.org/10.1080/2162402x2022.2080329
  20. Pyke R.M. Evolutionary pressure against MHC class II binding cancer mutations. Cell. 2018; 175 (2): 416–28. doi: 10.1016/j.cell.2018.08.048
  21. Gertel S., Polachek A., Elkayam O. Lymphocyte activation gene-3 (LAG-3) regulatory T cells: An evolving biomarker for treatment response in autoimmune diseases. Autoimmunity Reviews. 2022; 21 (6): 103085. DOI: https://doi.org/10.1016/j.autrev.2022.103085
  22. Toor S. M. et al. Immune checkpoints in circulating and tumor-infiltrating CD4+ T cell subsets in colorectal cancer patients. Frontiers in immunology. 2019; 10: 2936.
  23. Tirier S.M., Mallm J.P., Steiger S., Poos A.M., Awwad M.S., Giesen N., Casiraghi N., Susak H., Bauer K., Baumann A., John L., Seckinger A., Hose D., Müller-Tidow C., Goldschmidt H., Stegle O., Hundemer M., Weinhold N., Raab M.S., Rippe K. Subclone-specific microenvironmental impact and drug response in refractory multiple myeloma revealed by single-cell transcriptomics. Nat Commun. 2021; 12 (1): 6960. DOI:1 https://doi.org/0.1038/s41467-021-26951-z
  24. Sun F., Guo Z.S., Gregory A.D., Shapiro S.D., Xiao G., Qu Z. Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer. J. Immunother Cancer. 2020; 8 (1): 000294. DOI: https://doi.org/10.1136/jitc-2019-000294
  25. Wang, J., Asch, A. S., Hamad, N., Weickhardt, A., Tomaszewska-Kiecana, M., Dlugosz-Danecka, M. A phase 1, open-label study of MGD013, a bispecific DART® molecule binding PD-1 and LAG-3 in patients with relapsed or refractory diffuse large B-cell lymphoma. Blood. 2022; 136: 21–2.
  26. Feng Y., Liu L., Li J., Huang J., Xie J.H., Menard L., Shi Y., Zhao X., Xie S., Zang W., Tan H. Systematic characterization of the tumor microenvironment in Chinese patients with hepatocellular carcinoma highlights intratumoral B-cells as a potential immunotherapy target. Oncol Rep. 2022; 47 (2): 38. DOI: https://doi.org/10.3892/or.2021.8249

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies